|
标题 互素理论与费马最后定理(A)
作者 王瑞林
摘要 本文以互素理论为工具,以二项式定理为平台,证明了:p大于3 为奇素数,费马方程无两两互素的正整数解 x,y,z, 亦即使用在有理整数系统内操作的方法证明了费马最后定理成立。
关键词 费马最后定理,费马方程,互素理论,二项式定理
联系方式 Email:wangruilin080420@126.com
title Coprime Theory and Fermat’s Last Theorem(A) )
authors Wang Ruilin
abstract In this paper, taking coprime theory as tools, taking Binomial Theorem as a platform, we have proved : For any odd prime p is greater than 3, Fermat';s equation has no solutions with x,y,z which are positive integers and coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
keywords Fermat’s Last Theorem, Fermat’s equation, Coprime theory, Binomial Theorem,
contact Email:wangruilin080420@126.com
文章全文 1215501084593.pdf
发布时间 2008-07-08 15:11:24
发表状态 未发表
引用网址 http://prep.istic.ac.cn/docs/1208228475620.html
发表评论
文章修改历史
相关评论(目前还没有评论内容)
标题 互素理论与费马最后定理(B)
作者 王瑞林
摘要 本文以互素理论为工具,以二项式定理为平台,证明了:p为的奇素数,费马方程无两两互素的正整数解 x,y,z, 亦即使用在有理整数系统内操作的方法证明了费马最后定理成立。
关键词 费马最后定理,费马方程,互素理论,二项式定理,
联系方式 wangruilin080420@126.com
title Coprime Theory and Fermat’s Last Theorem(B)
authors WANG Rui-lin
abstract In this paper, taking coprime theory as tools, taking Binomial Theorem as a platform, we have proved : For any odd prime p, Fermat';s equation has no solutions with x,y,z which are positive integers and coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
keywords Fermat’s Last Theorem, Fermat’s equation, Coprime theory, Binomial Theorem,
contact wangruilin080420@126.com
文章全文 1212886786692.pdf
发布时间 2008-06-08 08:59:46
发表状态 未发表
引用网址 http://prep.istic.ac.cn/docs/1208186688829.html
标题 Coprime Theory and Fermat’s Last Theorem(D)
作者 WANG Rui-lin
摘要 In this paper, taking coprime theory as tools and taking Binomial Theorem as a platform, we have proved : For any odd prime number p, Fermat';s equation has no solutions with x,y,z which are positive integers and are coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
关键词 Fermat’s Last Theorem, Fermat’s Equation, Coprime Theory, Binomial Theorem,
联系方式 Email:wangruilin080420@126.com
title Coprime Theory and Fermat’s Last Theorem(D)
authors WANG Rui-lin
abstract In this paper, taking coprime theory as tools and taking Binomial Theorem as a platform, we have proved : For any odd prime number p, Fermat';s equation has no solutions with x,y,z which are positive integers and are coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
keywords Fermat’s Last Theorem, Fermat’s Equation, Coprime Theory, Binomial Theorem,
contact Email:wangruilin080420@126.com
文章全文 1211989849253.pdf
发布时间 2008-05-28 23:50:49
发表状态 未发表
引用网址 http://prep.istic.ac.cn/docs/1208187593808.html
发表评论
文章修改历史
相关评论(目前还没有评论内容)
标题 Coprime Theory and Fermat’s Last Theorem(C)
作者 WANG Rui-lin
摘要 In this paper, taking coprime theory as tools and taking Binomial Theorem as a platform, we have proved : For any odd prime number p is greater than 3, Fermat';s equation has no solutions with x,y,z which are positive integers and are coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
关键词 Fermat’s Last Theorem, Fermat’s Equation, Coprime Theory, Binomial Theorem,
联系方式 Email: wangruilin080420@126.com
title Coprime Theory and Fermat’s Last Theorem(C)
authors WANG Rui-lin
abstract In this paper, taking coprime theory as tools and taking Binomial Theorem as a platform, we have proved : For any odd prime number p is greater than 3, Fermat';s equation has no solutions with x,y,z which are positive integers and are coprime in pairs, i.e. in a way operating in the system of rational integers have proved Fermat’s Last Theorem true.
keywords Fermat’s Last Theorem, Fermat’s Equation, Coprime Theory, Binomial Theorem,
contact Email: wangruilin080420@126.com
文章全文 1215501177241.pdf
发布时间 2008-07-08 15:12:57
发表状态 未发表
引用网址 http://prep.istic.ac.cn/docs/1208188413167.html
中国科学技术信息研究所 版权所有
Email:preprint@istic.ac.cn 咨询电话:58882427
|
|