数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 59277|回复: 28

在圆周上任取三点 A,B,C ,求 A,B,C 三点落在同一半圆周内的概率

[复制链接]
发表于 2014-10-21 21:16 | 显示全部楼层 |阅读模式
这是台湾网友 YAG 发表在“陆老师的《数学中国》园地”的一个帖子,

欢迎大家一起来想想如何解答:

在半徑為1的圓周上任取三點ABC, 求 ABC三點可落在同一半圓周內的機率?

 楼主| 发表于 2014-10-21 23:36 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 3 反对 0

使用道具 举报

发表于 2016-6-6 19:39 | 显示全部楼层
P=【(2π-x)在(0,π)积分】/π=0.75
回复 支持 1 反对 0

使用道具 举报

发表于 2016-6-6 19:40 | 显示全部楼层
水无月 发表于 2016-6-6 19:39
P=【(2π-x)在(0,π)积分】/π=0.75

“π”是pai
发表于 2016-6-6 22:47 | 显示全部楼层
本帖最后由 dodonaomiki 于 2016-6-6 15:40 编辑

从上面两位老师的解答来看,
我的思路和方向,肯定出错啦!因为,我的计算结果,不是3/4


但,我检查了好几遍,
始终发现不辽自己的错误!
一直觉得,
是7/16,
哪位大侠,可以指出一下我的错误?谢谢~~~

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2016-6-7 06:57 | 显示全部楼层
dodonaomiki 发表于 2016-6-6 22:47
从上面两位老师的解答来看,
我的思路和方向,肯定出错啦!因为,我的计算结果,不是3/4

举个简单的例子:

设 A 在区域 1 中 11 点钟的位置,B 在区域 2 中 1 点钟的位置,C 在区域 4 中 4 点钟的位置。

这时,A,B,C 显然在同一半圆周内,但是按照楼上的做法,却没有把这种情况计算进去。
回复 支持 1 反对 0

使用道具 举报

发表于 2016-6-7 11:58 | 显示全部楼层
:Dlaoshi
老师,我知道我错在哪里啦~~~实际上就是,我没有细化
进一步的说,我的思路和方法,是行不通的!



另外,原来老师的方法,是极其简单的、;P简洁的,很好的,现在,也看懂啦!
发表于 2016-10-10 08:38 | 显示全部楼层

q

本帖最后由 王守恩 于 2016-10-15 14:28 编辑

在半径为R的圆周上任取两点,则两点落在同一半圆周内的概率是1/2;
在半径为R的圆周上任取三点,则三点落在同一半圆周内的概率是3/4=1/2+1/4;
在半径为R的圆周上任取四点,则四点落在同一半圆周内的概率是7/8=1/2+1/4+1/8;
在半径为R的圆周上任取五点,则五点落在同一半圆周内的概率是15/16=1/2+1/4+1/8+1/16;
。。。。。。
各位网友,我的想法不太成熟,希望大家批评。



求概率的题目,答案不可能是1。

点评

【在半径为R的圆周上任取两点,则两点落在同一半圆周内的概率是1/2;】 这个不对吧?概率是 1.  发表于 2016-10-15 06:57
发表于 2016-10-15 06:27 | 显示全部楼层
王守恩 发表于 2016-10-10 08:38
在半径为R的圆周上任取两点,则两点落在同一半圆周内的概率是1/2;
在半径为R的圆周上任取三点,则三点落 ...

我用的是加法原理。
一件工作,
第1个人完成全部的1/2,
第2个人完成剩下的1/2,
第3个人完成再剩下的1/2,
第4个人完成再再剩下的1/2,
发表于 2016-10-17 09:13 | 显示全部楼层
本帖最后由 天山草 于 2016-10-17 10:06 编辑

我用 VB 语言编写了一个小程序,用产生随机数的方法模拟每次的试验,试验次数累计到 1 亿次,求得概率为 0.74999832(理论概率是0.75)。
程序如下:   
         
     Private Sub form_Click()         
     Randomize     '启动随机数发生器
     n = 0
     For i = 1 To 1000000   ' 试验次数
      b1 = 360 * Rnd  '产生三个 1 至 360 之间的随机数
      b2 = 360 * Rnd
      b3 = 360 * Rnd     
     If b1 <= b2 And b1 <= b3 And b2 <= b3 Then a1 = b2 - b1: a2 = b2 - b3
     If b1 <= b3 And b1 <= b2 And b3 <= b2 Then a1 = b3 - b1: a2 = b3 - b2
     If b2 <= b1 And b2 <= b3 And b1 <= b3 Then a1 = b1 - b2: a2 = b1 - b3
     If b2 <= b3 And b2 <= b1 And b3 <= b1 Then a1 = b3 - b2: a2 = b3 - b1
     If b3 <= b1 And b3 <= b2 And b1 <= b2 Then a1 = b1 - b3: a2 = b1 - b2
     If b3 <= b2 And b3 <= b1 And b2 <= b1 Then a1 = b2 - b3: a2 = b2 - b1
     
     If a1 <= 180 And -a2 <= 180 And a1 + (-a2) <= 180 Then n = n + 1  '三个点同在半圆内的情况一      
     If a1 >= 180 And -a2 >= 180 And (360 - a1) + (360 + a2) <= 180 Then n = n + 1 '三个点同在半圆内的情况二      
     If a1 >= 180 And -a2 <= 180 Then n = n + 1    '三个点同在半圆内的情况三      
     If a1 <= 180 And -a2 >= 180 Then n = n + 1    '三个点同在半圆内的情况四     
    Next i
    Print "s="; n / (i - 1)      
End Sub

    说明一下编程思路——
    假定这圆周内部是一个圆盘,游戏者每次往盘上投掷三枚飞镖。
    从圆盘中心向这三枚飞镖引三条射线,与圆周交于三点。这三点位于同一半圆圆周上的概率即为所求。
    每试验一次,程序就产生三个 1 至 360 的随机数 b1,b2,b3,代表三枚飞镖的角度,将这三个角度同步旋转,使中间值角度到达 0 度位置,此时最大角度算是正角度,最小角度算是负角度。程序中将正角度记为 a1,负角度记为 a2,那个中间值角度 a0=0 不必要在程序中出现。   
    每试验一次,就把三枚飞镖是否落在同一半圆内的次数进行统计,最后算算总账,即得概率。
    编程难点是,如何考虑 a0,a1,a2 是位于同一半圆内? 如果对各种情况漏掉或多算,就出错了。我考虑的四种情况是:
    (1)如果 a1,a2 都在第一、第二象限中,则 a0,a1,a2 位于同一半圆内;
    (2)如果 a1,a2 都在第三、第四象限中,则 a0,a1,a2 位于同一半圆内;
    (3)如果 a1 在一、二象限中,而 a2 在三、四象限中,就要计算 a1a0a2 圆弧是否小于半圆,是,则 a0,a1,a2 位于同一半圆内;
    (4)如果 a2 在一、二象限中,而 a1 在三、四象限中,就要计算 a1a0a2 圆弧是否小于半圆,是,则 a0,a1,a2 位于同一半圆内。
回复 支持 2 反对 0

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-14 06:15 , Processed in 0.104845 second(s), 19 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: