|
在(4*qk^2)^1±Δ中一定存在K(qk)个p1+p2素数对
文/施承忠
这里K(qk)=q1+q2+q3+...+qk,其中q1,q2,q3,...,qk是所有不大于qk的所有孪生素数.
从下面的数据可以看出,只要存在一个孪生素数qk就一定存在K(qk)个p1+p2的素数对,这是从施承忠的大筛法定理中推出的.而这K(qk)个p1+p2的素数对远远大于k个p1+p2的素数对.
比如说q3=11,那么K(qk)=3+5+11=19,19>3.4*11^2=484,484^1.147144082=1202,D(1202)=19.
这是对旧哥德巴赫猜想理论极大的挑战.虽然这是一种极初等的方法,但是它对于孪生素数问题的解决且是完美无缺的.一切高等的数学都是从初等数学中提升的.如果我们连初等的都做不好,怎么能做好高等的呢?
D(x)=k(qk)=x^s
【序号】【孪生素数】【D(x)=x^s=K(qk)】【(4*qk^2)^s=K(qk)】【(4*qk^2)^1±Δ=x,D(x)=K(qk)】
1【3】D(128)=128^0.226423214=3【36^0.306573596=3【36^1.353984825=128
2【5】D(368)=368^0.351965529=8【100^0.451544993=8【100^1.282923909=368
3【11】D(1202)=1202^0.415192618=19【484^0.476285755=19【484^1.147144082=1202
4【17】D(3032)=3032^0.446991254=36【1156^0.508104448=36【1156^1.136721230=3032
5【29】D(6326)=6326^0.476940737=65【3364^0.514031013=65【3364^1.077767054=6326
6【41】D(12326)=12326^0.495085287=106【6724^0.529128228=106【6724^1.068761771=12326
7【59】D(21332)=21332^0.512235567=165【13924^0.535137603=165【13924^1.044709969=21332
8【71】D(33458)=33458^0.524458396=236【20164^0.551253276=236【20164^1.051090573=33458
9【101】D(53138)=53138^0.534902255=337【40804^0.548209252=337【40804^1.024877437=53138
10【107】D(73418)=73418^0.544079407=444【45796^0.568007063=444【45796^1.044035614=73418
11【137】D(97862)=97862^0.553874950=581【75076^0.566952208=581【75076^1.023610488=97862
12【149】D(132026)=132026^0.559170723=730【88804^0.578632292=730【88804^1.034804342=132026
13【179】D(176024)=176024^0.564011693=909【128164^0.579228541=909【128164^1.026977968=176024
14【191】D(214274)=214274^0.570513993=1100【145924^0.588946175=1100【145924^1.032308028=214274
15【197】D(264038)=264038^0.574166635=1297【155236^0.599681084=1297【155236^1.044437358=264038
16【227】D(318016)=318016^0.578466967=1524【206116^0.598968396=1524【206116^1.035440968=318016
17【239】D(384782)=384782^0.581222470=1763【228484^0.605773403=1763【228484^1.042240165=384782
18【269】D(451882)=451882^0.584952971=2032【289444^0.605673277=2032【289444^1.035422174=451882
19【281】D(524702)=524702^0.588151567=2313【315844^0.611726952=2313【315844^1.040083860=524702
20【311】D(605602)=605602^0.591292473=2624【386884^0.611886247=2624【386884^1.034828406=605602
21【347】D(698374)=698374^0.594259123=2971【481636^0.611133981=2971【481636^1.028396464=698374
22【419】D(827072)=827072^0.596565079=3390【702244^0.603815431=3390【702244^1.012153498=827072
23【431】D(959624)=959624^0.598815863=3821【743044^0.610146171=3821【743044^1.018921188=959624
24【461】D(1084712)=1084712^0.601732800=4282【850084^0.612474919=4282【850084^1.017851975=1084712
25【521】D(1251878)=1251878^0.603767962=4803【1085764^0.609952610=4803【1085764^1.010243419=1251878
26【569】D(1420088)=1420088^0.606297929=5372【1295044^0.610268712=5372【1295044^1.006549226=1420088
27【599】D(1602404)=1602404^0.608571444=5971【1435204^0.613301939=5971【1435204^1.007773118=1602404
28【617】D(1830506)=1830506^0.609774084=6588【1522756^0.617658406=6588【1522756^1.012929907=1830506
29【641】D(2004578)=2004578^0.612355468=7229【1643524^0.620852198=7229【1643524^1.013875485=2004578
30【659】D(2214332)=2214332^0.614155685=7888【1737124^0.624530858=7888【1737124^1.016893393=2214332
31【809】D(2493926)=2493926^0.615826352=8697【2617924^0.613804275=8697【2617924^0.996716482=2493926
32【821】D(2780354)=2780354^0.617393529=9518【2696164^0.618675580=9518【2696164^1.002076554=2780354
33【827】D(3061844)=3061844^0.618985658=10345【2735716^0.623689017=10345【2735716^1.007598495=3061844
34【857】D(3356602)=3356602^0.620496125=11202【2937796^0.626048550=11202【2937796^1.008948364=3356602
35【881】D(3649336)=3649336^0.622072804=12083【3104644^0.628799653=12084【3104644^1.010813604=3649336
36【1019】D(3998998)=3998998^0.623654655=13102【4153444^0.622103891=13103【4153444^0.997513424=3998998
37【1031】D(4411412)=4411412^0.624604692=14133【4251844^0.626112385=14133【4251844^1.002413836=4411412
38【1049】D(4794022)=4794022^0.625881864=15182【4401604^0.629375953=15182【4401604^1.005582665=4794022
39【1061】D(5152622)=5152622^0.627331421=16243【4502884^0.632850694=16243【4502884^1.008798017=5152622
40【1091】D(5560262)=5560262^0.628441650=17334【4761124^0.634783348=17334【4761124^1.010091149=5560262
41【1151】D(5990848)=5990848^0.629557627=18485【5299204^0.634545775=18485【5299204^1.007923259=5990848
42【1229】D(6445562)=6445562^0.630725549=19714【6041764^0.633338893=19714【6041764^1.004143394=6445562
43【1277】D(6914552)=6914552^0.631897986=20991【6522916^0.634246100=20991【6522916^1.003715970=6914552
44【1289】D(7433326)=7433326^0.632775327=22280【6646084^0.637284461=22280【6646084^1.007125963=7433326
45【1301】D(7879906)=7879906^0.634024342=23581【6770404^0.640141844=23581【6770404^1.009648686=7879906
46【1319】D(8428958)=8428958^0.634759294=24900【6959044^0.642479721=24900【6959044^1.012162763=8428958
47【1427】D(8967668)=8967668^0.635783852=26327【8145316^0.639626719=26327【8145316^1.006044298=8967668
48【1451】D(9541208)=9541208^0.636669555=27778【8421604^0.641653088=27778【8421604^1.007827503=9541208
|
|