数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 6064|回复: 12

黎曼和,以及傅里叶级数,在数值精度计算上,有啥差别?

[复制链接]
发表于 2016-1-25 20:13 | 显示全部楼层 |阅读模式
问题如题

谢谢!


真的不懂
 楼主| 发表于 2016-1-25 22:50 | 显示全部楼层
黎曼和 编辑
这里有一块形状不规则的土地,要测量它的面积,怎么办呢?一个叫黎曼的德国数学家(Bernhard Riemann, 1826-1866),他想了个办法:将这不规则图形切成一条条的小长条儿,然后将这个长条近似的看成一个矩形,再分别测量出这些小矩形的长度,再计算出它们的面积,把所有矩型面积加起来就是这块不规则地的面积。这就是著名的“黎曼和”。小长条宽度趋于0时,即为面积微分,各个面积求和取极限即为定积分。虽然牛顿时代就给出了定积分的定义,但是定积分的现代数学定义却是用黎曼和的极限给出。
中文名 黎曼和 外文名 Riemann Sum
发表于 2016-1-25 23:13 | 显示全部楼层
这是不一样的东西,不能比较。黎曼和的精度主要跟切割的细致程度有关。而傅立叶级数是通过波的叠加来逼近一个函数,它的收敛速度主要跟对应函数本身的性质有关。所以它们是不同层次上的两个问题,不可以简单比较。

点评

半懂不懂~~~~  发表于 2016-1-26 00:28
学了个不懂不懂,实话实说!我忽然想到了这问题:这两玩意儿到底有啥区别?然后,今夜,夜已深沉,我到明天结合资料,尽量把您的话悟懂!再一次表示感谢~若同济教材编写的特别粗俗易懂,那该多好!尽管这只是一个幻想  发表于 2016-1-26 00:28
非常感谢您的解惑!呵呵,这个问题我以前是绝对不会去考虑的,一个美国佬,当然很厉害!给我讲解一个具体的椭圆积分的时候,就提到了黎曼和以及傅里叶级数这两玩意儿~~因鄙人学力不逮,同济高数实在学得很浅薄,  发表于 2016-1-26 00:25
 楼主| 发表于 2016-1-26 00:09 | 显示全部楼层
1.傅立叶变换的物理意义
傅立叶变换是数字信号处理领域一种很重要的算法.要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义.傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位.
和傅立叶变换算法对应的是反傅立叶变换算法.该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号.因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工.最后还可以利用傅立叶反变换将这些频域信号转换成时域信号.
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换.它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.
在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征."任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)).
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用.
2.图像傅立叶变换的物理意义
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数.
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示.由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系.为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有.傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反).一般来讲,梯度大则该点的亮度强,否则该点亮度弱.这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的.对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的.将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰.
另外我还想说明以下几点:
1、图像经过二维傅立叶变换后,其变换系数矩阵表明:
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区).若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上.这是由二维傅立叶变换本身性质决定的.同时也表明一股图像能量集中低频区域.
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大).
3.傅立叶变换的提出
让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成.当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率.法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避.直到拉格朗日死后15年这个论文才被发表出来.
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号.但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的.
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号.用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度.一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的.且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示.
 楼主| 发表于 2016-1-26 00:22 | 显示全部楼层
作为  对照,
也可以看一哈

勒贝格积分

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

勒贝格积分与黎曼积分出发点不太相同,如果你有兴趣,可以找一本实变函数的书来读。据说那是本天书。  发表于 2016-1-27 00:20
 楼主| 发表于 2016-1-26 13:10 | 显示全部楼层
拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号.但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的.
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号.用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度.一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的.且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示

________________________________________
由此看来,
Fourier  series 更像是  正弦波?:L:L

点评

方波和三角波图形简单理论上虽然可行,但正因为其不具光滑性和正交性,所以表达起来不够简捷。  发表于 2016-1-27 00:35
关于级数逼近的问题通常的高等数学书重点介绍泰勒级数,但在实际应用中,泰勒级数因缺乏正交性,有时不方便使用。而傅立叶级数正有这方面的优越性。关于这方面的学习材料,可以找三角级数论及正交函数论这样的书习。  发表于 2016-1-27 00:31
 楼主| 发表于 2016-1-27 12:19 | 显示全部楼层
ccmmjj:

谢谢您通俗的解释
听斯坦福大学的教授讲解傅里叶级数时,确实!他一再提及两个词汇:smooth  ,orthorgonal
一个光滑,一个正交,而且还说:正交是比较术语,比较专业,perpendicular就不那么专业啦!


另外,好的
我遵循你的意见
会去购买一些  三角级数论,正交函数论的书籍
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2026-1-17 04:18 , Processed in 0.104865 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表