|

楼主 |
发表于 2025-4-14 07:51
|
显示全部楼层
爱开玩笑的极限!!
\(\frac{1}{10^{0}}+\frac{3}{10^{1}}+\frac{6}{10^{3}}+\frac{10}{10^{6}}+\frac{15}{10^{10}}+\frac{21}{10^{15}}+\frac{28}{10^{21}}+\frac{36}{10^{28}}+\frac{45}{10^{36}}+\cdots\cdots+\frac{n(n+1)/2}{10^{n(n-1)/2}}\)
N[Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, 10}], 100]
1.306010001500021000028000003600000045000000055000000000000000000000000000000000000000000000000000000
N[Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, 100}], 100]
1.306010001500021000028000003600000045000000055000000006600000000078000000000091000000000010500000000
N[Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, 1000}], 100]
1.306010001500021000028000003600000045000000055000000006600000000078000000000091000000000010500000000
N[Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, 10000}], 100]
1.306010001500021000028000003600000045000000055000000006600000000078000000000091000000000010500000000
N[Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, 100000}], 100]
1.306010001500021000028000003600000045000000055000000006600000000078000000000091000000000010500000000
Sum[n (n + 1)/2/10^(n (n - 1)/2), {n, \(\infty\)}]
1.3060100015000210000280000036000000450000000550000000066000000000780000000000910000000000105000000000001200000000000001360000000000000153000000
00000000171000000000000000190000000000000000021000000000000000000231000000000000000000253000000000000000000027600000000000000000000300000000000000000000000
325000000000000000000000035100000000000000000000000378000000000000000000000000406000000000000000000000000043500000000000000000000000000465000000000000000000000000000496
000000000000000000000000000052800000000000000000000000000000561000000000000000000000000000000595000000000000000000000000000000063000000000000000000000000000000000666000000000000000000......
\(\displaystyle\sum_{n=1}^{\infty}\frac{n(n+1)}{2*10^{n(n-1)/2}}\)
这串数没有长大,可就是找不到极限!!! |
|