数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3722|回复: 4

Differentiation of a function of discrete variable

[复制链接]
发表于 2010-11-29 21:51 | 显示全部楼层 |阅读模式

例题中微分的用法让人不解。
另外,n=1为什么会变成n=0呢?

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2010-11-29 22:12 | 显示全部楼层

Differentiation of a function of discrete variable

(d/dq)q^n = nq^(n-1) 总是是成立的
幂级数在收敛开区间内是可以逐项微分的。利用求和与微分的这种可交换性,得到幂级数的初等函数表达。这是一种常用的技巧。
n起始于1 改为 起始于 0 不会改变计算结果,却简化了计算。
 楼主| 发表于 2010-11-29 22:26 | 显示全部楼层

Differentiation of a function of discrete variable

Derivative a function of a real variable is defined to be the rate of change when the change of both independent and dependent variables are infinitesimal.
In the case of q^n, n cannot be infinitesimal, I think d/dq must be defined differently, how is it defined?
发表于 2010-11-29 22:35 | 显示全部楼层

Differentiation of a function of discrete variable

Here you just view q^n as the nth power of continuous variable q
 楼主| 发表于 2010-11-30 16:09 | 显示全部楼层

Differentiation of a function of discrete variable

Alright. I still don';t get, but I';ll leave it for later review.
Thank you.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-5 23:54 , Processed in 0.093241 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表