数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 7050|回复: 16

求无穷级数 1/10+1/10^2+2/10^3+3/10^4+5/10^5+8/10^6+… 之和

[复制链接]
发表于 2017-11-19 09:32 | 显示全部楼层 |阅读模式
求和:1/10+1/100+2/1000+3/10000+...

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2017-11-19 12:05 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2017-11-19 16:40 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

出乎意料!答案是个简单的有理数!太妙了!陆老师的解法!  发表于 2017-11-19 20:15
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2017-11-19 20:31 | 显示全部楼层
蔡家雄 发表于 2017-11-19 20:25
兔子数列中的难题

1/1+1/1+1/2+1/3+1/5+1/8+1/13+1/21+1/34+1/55+1/89+1/144+...... = ?

兔子数列中的难题

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

这个得数是 纯数字 形式,我想知道的是它的代数表达式?  发表于 2017-11-19 20:37
发表于 2017-11-21 19:09 | 显示全部楼层
本帖最后由 朱明君 于 2017-11-21 11:11 编辑


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2017-11-21 23:20 | 显示全部楼层
蔡家雄 发表于 2017-11-21 19:20
证明:二项式系数平方的和等于 C(2n, n) = (2n)!/(n!)^2



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2025-4-8 17:50 | 显示全部楼层
谢谢陆老师!!!谢谢elim!!!

11+11+12+13+15+18+113+121+134+155+189+1144+1233+1377+1610+1987+......=3.359885666243177553172011302

n=05cos(nπ)ϕ2n+11

3.3598856662431775531720113029189271796889051337319684864955538153251303189966833836154162164567900872970453429288539133041367890171008836795913517330771190785803335503
325077531875998504871797778970060395645092153758927752656733540240331694417992939346109926262579646476518686594497102165589843608814726932495910794738736733785233268774
997627277579468536769185419814676687429987673820969139012177220244052081510942649349513745416672789553444707777758478025963407690748474155579104200675015203410705335.......
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-6-25 10:47 | 显示全部楼层
k=1Ak(k+B)Bk=1AkB, A>0, BZ
回复 支持 反对

使用道具 举报

发表于 2025-6-25 19:49 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +20 收起 理由
王守恩 + 20 谢谢陆老师!!!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-6-26 08:02 | 显示全部楼层
好玩!!!

n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66, 67, ......

k=11(k2+k)n+12n=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-10 06:23 , Processed in 0.095592 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: