|
[原创]三分角尝试
尺规近似做法很多,如下为资料,没有图,我没理解,希望对朋友有帮助:
人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?
人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.
■关于三等分一任意角问题
★作法一
尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA
★作法二
帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA
★作法三
帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA
★作法四
玫瑰线方法:交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA
■关于立方倍积问题
★作法一
柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边.
★作法二
门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得
y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长.
★作法三
阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长.
■化圆为方问题
★作法:对于已知圆O,作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O等积的正方形 |
|