数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4941|回复: 8

[分享] 级数敛散性判断

[复制链接]
发表于 2012-9-6 01:10 | 显示全部楼层 |阅读模式
(1)

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2012-9-6 01:12 | 显示全部楼层

[分享] 级数敛散性判断

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2012-9-6 01:25 | 显示全部楼层

[分享] 级数敛散性判断

很长时间没有访问【数学中国】了。忙一些IT的事情。风花飘飘最近飘过我的一个试验论坛。让我觉得也该给大家问个好什么的...
发表于 2012-9-6 01:31 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
发表于 2012-9-6 06:00 | 显示全部楼层

[分享] 级数敛散性判断

下面引用由elimqiu2012/09/05 06:25pm 发表的内容:
很长时间没有访问【数学中国】了。忙一些IT的事情。风花飘飘最近飘过我的一个试验论坛。让我觉得也该给大家问个好什么的...
欢迎您光临!
发表于 2012-9-6 07:38 | 显示全部楼层

[分享] 级数敛散性判断

欢迎 elimqiu 回来!
elimqiu 给出的这个题的解答很巧妙,我已经将这个帖子转贴到
“陆老师的《数学中国》园地”
http://mathchina.net/dvbbs/dispbbs.asp?boardid=4&id=3810&page=1&star=1
发表于 2012-9-6 20:04 | 显示全部楼层

[分享] 级数敛散性判断

[这个贴子最后由任在深在 2012/09/06 08:08pm 第 1 次编辑]

证:
因为  √2=1.414
     ³√3=1.44
     4√4=1.212
所以n√n≥1+α, 0<α<0.5
所以等价于:
         ∞                        ∞
         Σ(1+1/4+1/5+1/6,,,+1/n)∽Σ1/n
        n=1                        n=1
     ∞
   而Σ1/n发散
     n=1
    ∞
所以Σ(1+√2+³√3+,,,+n√n)也发散!
   n=1
   证毕。[br][br]-=-=-=-=- 以下内容由 任在深 时添加 -=-=-=-=-
谢谢老师送来一道好题!
发表于 2012-9-7 09:31 | 显示全部楼层

[分享] 级数敛散性判断


证:
       因为 (√n)ˆ1/n=1+α,  0≤α≤0.5
             lim(√n)ˆ1/n=1
             n→∞
        又   [(√n)ˆ1/n]=1,  取整。

             ∞                         ∞
      所以   Σ(1+√2+³√3+,,,+n√n)=Σ1/n 也发散!
            n=1                         n=1
    证毕。
发表于 2012-9-8 08:41 | 显示全部楼层

[分享] 级数敛散性判断

俺的证明不知正确与否?
   请好心人批评指正!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2026-1-1 06:21 , Processed in 0.090915 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表