|

楼主 |
发表于 2020-8-15 10:30
|
显示全部楼层
少年哈尔莫斯
哈尔莫斯于1916年3月3日出生于匈牙利布达佩斯,是犹太人。父亲是医生。母亲去世后,父亲移民到美国另立家室。哈尔莫斯13岁被父亲接到芝加哥,从此成了美国人。据哈尔莫斯说,他的继母“像解极值问题一样对待生活中的每件事情”。为了节省学费,继母找人帮忙,让哈尔莫斯直接插班高二。当然之所以能够顺利跳级,主要还是因为哈尔莫斯聪明。
哈尔莫斯很快就掌握了英语。高中毕业后,为了追求自由,哈尔莫斯选择了离家更远的伊利诺伊大学,而不是数学实力更雄厚、阵容更强大的且位于近水楼台的芝加哥大学。1931年9月,15岁的哈尔莫斯在伊利诺伊大学注册,专业是化学工程。哈尔莫斯很快发现,自己对化学实验不感兴趣——用他本人的话说,“完成实验报告就像在作假帐”。于是他转到数学系。
大一时他修了三门数学课:代数、三角、解析几何。只有解析几何是新东西,可惜当时并没有学习线性代数(矩阵和向量),他对所谓的“化简”和“旋转”不得要领。大二时他修了空间解析几何与微积分(当时认为微积分对大一学生来说还太难了),用的教材是Granville–Smith–Longley的《微积分》。哈尔莫斯很憎恶这本书,不懂作者到底在说些什么。直到大二快结束时,哈尔莫斯才“越来越确信,主修数学算是找对了方向。”大三时哈尔莫斯修了三门数学课:高等代数、高等微积分、射影几何。教射影几何的莱维(H. Levy)很喜欢哈尔莫斯,曾带他到数学图书馆,教他使用数学文献。后来莱维指导了哈尔莫斯的本科学位论文。大四时,哈尔莫斯又修了三门数学课:高等欧几里得几何、数学的基本概念、概率论。这些课程留给他的感觉,更多是神秘而非美妙。
总的来说,由于当时伊利诺伊大学的绝大部分数学教师都不搞数学研究(甚至连教学都成问题),哈尔莫斯本科阶段没有打好数学基础,他是这样回顾其本科生涯的([1],p.45):
“我的以数学为主修科的本科教育,就这样匆匆而过。在数学方面,我不仅缺乏启迪,而且无知得惊人。Weierstrass,Hausdorff,Poincaré,Galois和Cayley,对我而言,纯粹是传闻;我对正经的分析、点集拓扑、代数拓扑、抽象代数、甚至是4阶方阵乘法之外的线性代数,一无所知。”
1934年,哈尔莫斯本科毕业。之后继续在伊利诺伊研究生院深造。他起初选的是哲学专业(早在大二时,他就通过逻辑课对哲学发生了兴趣),同时也修统计课,以保持对数学的兴趣。大概是他在哲学方面没什么天分,在1935年的哲学硕士学位的综合口试中挂了,这断了他的哲学路。不过好在他还有数学这条后路,哈尔莫斯因此正式转为数学研究生。
哈尔莫斯修的头三门研究生数学课是代数、分析和数论。代数用的是博谢(M. Bôcher)的教材,哈尔莫斯发现很难,他后来这样评价这本书([1], p.51):
“我做学生的时候,我们用的矩阵论的教材是博谢的老得掉牙的书(我认为写得一团糟),我在这个科目上花的大量时间当中,我的主要情绪是恼火,有时甚至达到愤怒。……直到四五年以后,在我已经取得博士学位、听冯·诺依曼(J. von Neumann)讲算子理论以后,我才真正开始懂得这个科目是讲什么的。”
为了掌握线性代数,哈尔莫斯极其用功,参考了迪克森(L. E. Dickson)的《近世代数理论》,还带领同学讨论比较难懂的 -矩阵。功夫不负有心人,哈尔莫斯终于过了线性代数这一关。教数论的是研究生院院长卡迈克尔(R. D. Carmichael)。卡迈克尔不仅研究做得好,也是一位优秀的教员。正是他,让哈尔莫斯爱上了数论,并直到哈尔莫斯做出第一项研究。
卡迈克尔给学生讲了印度传奇数学家拉马努金(S. Ramanujan)1917 年的一项研究:对于哪些四元正整数组 (a,b,c,d),二次型 ax^2+by^2+cz^2+dt^2 (变量 x,y,z,t 取整数值)可以表示出所有的正整数?拉马努金确定出一共有55个这样的四元数组,而迪克森在1927年则指出其中有一个 (1,2,5,5) 刚好不能表示15。卡迈克尔受到这一成果的启发,建议哈尔莫斯考虑下述问题:对于哪些四元正整数组 (a,b,c,d),二次型 ax^2+by^2+cz^2+dt^2 可以表示出恰好除了一个整数之外的所有的正整数?哈尔莫斯发现,可能的四元数组一共有88种,并证明了其中87种确实如此。剩下的一种 (1,2,7,13) 他在1938年发表文章(Halmos, P. R. (1938). Note on almost-universal forms. Bull. Amer. Math. Soc. 44(2): 141–144.)时尚不能肯定,后来被帕尔(G. Pall)证明(Pall, G. (1940). An almost universal form. Bull. Amer. Math. Soc. 46(4): 291.)。(2018年,M. Barowsky及其合作者在 Classically integral quadratic forms excepting at most two values,https://www.ams.org/journals/pro ... -9939-2018-13891-5/ 中指出 Halmos发现的88种中有两种( (1,1,2,22) 和 (1,2,4,22) )其实不能表出某两个正整数,他们定出了所有恰好不能表出两个正整数的四元数组)哈尔莫斯后来这样总结这项研究([1],p.54):
“做这个题目——我第一次发表的研究成果——不需要任何灵感,只需要耐心和勤奋,多应用卡迈克尔教给我的那些技术。但这项工作给了我一种成就感和我可以做研究的信心(这是极其需要的)。我非常得意,买了200份抽印本。结果,等到好多年后,我才全部送完。”
不过哈尔莫斯觉得自己突然跃迁为真正数学家的那一刻,是在1936年4月的某一天,他突然对分析有了顿悟,对此他记忆犹新([1],p.61):
“天色破晓时——我记得彼时的情景——安布罗斯(W. Ambrose)和我在教学楼二层的一间讨论室里谈话,他的一些话可谓是让我拨云见日所需的最后一抹阳光。突然之间,我对 ε-δ 和极限恍然大悟,十分清楚、优美,非常令人兴奋。我欢欣鼓舞,花了一个小时把Granville–Smith–Longley的《微积分》翻了一遍,忍不住快乐地点头。对,对,毫无疑问,我能证明这个!——是的,这很显然——他们怎么能把它弄得那么糟?我觉得一切都豁然开朗了。我还有很多东西要学,但没有任何东西能够阻止我去学习了。我知道,我能学明白。那一刻,我就成了数学家。”
尽管哈尔莫斯在那一刻对分析有感觉了,但他并没有立即喜欢上分析。他最终热爱上分析,要归因于年轻教员杜布(J. L. Doob)的影响。杜布1935年来到伊利诺伊,这对哈尔莫斯来说意义非凡。事实上,杜布后来成了哈尔莫斯的博士学位论文指导老师。1938年,哈尔莫斯以学位论文《随机变换的不变量:赌博系统的一般理论》获得博士学位。哈尔莫斯是杜布门下的第一个博士,而他的死党安布罗斯则于次年成为杜布的第二个博士。(杜布一共培养了16名博士,除了哈尔莫斯和安布罗斯,还有David H. Blackwell和周元燊(1924–)。)
那一年全美只有68人获得数学博士学位,照理说哈尔莫斯很容易找到教职。可是他发出的120份求职信,只收到两封回复:都是No。其原因可能正如杜克大学数学系主任格根(John Jay Gergen)后来透露的那样,“我们不想要任何难民。”1938年8月下旬,他的母校伊利诺伊大学同意聘用哈尔莫斯,年薪是1800美元,每周15课时的教学任务。这在当时算是标准的薪资。
哈尔莫斯在母校的教学和研究并不顺利,一年后安布罗斯被普林斯顿高等研究院接收为博士后研究员。哈尔莫斯认为这是个好机会,于是请求母校放行,允许他同去高等研究院游学访问。
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|