数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8236|回复: 15

三素数定理推论:Q=3+q1+q2

[复制链接]
发表于 2021-10-3 07:25 | 显示全部楼层 |阅读模式
本帖最后由 cuikun-186 于 2021-12-7 07:35 编辑

三素数定理推论:Q=3+q1+q2
原创作者:崔坤
中国青岛即墨,266200,E-mail:cwkzq@m网页链接
摘要:
数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考,
已知奇数N可以表成三个素数之和,
假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,
那么我们也就证明了偶数的哥德巴赫猜想。”,
直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
本文正是在上述方法和定理下给出了三素数定理推论=3+q1+q2
【该方法简称最小三素数法】
关键词:三素数定理,奇素数,加法交换律结合律
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:
Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,则Q=q1+q2+q3
根据加法交换律结合律,
不妨设:q1≥q2≥q3≥3,则:
Q+3=q1+q2+q3+3
Q+3-q3=3+q1+q2
显见,有且仅有q3=3时,等式左边Q+3-q3=Q
则有新的推论:Q=3+q1+q2
左边Q表示每个大于等于9的奇数,右边表示3+2个奇素数的和。
结论:每一个大于或等于9的奇数Q都是3+2个奇素数之和
实际上:
数学家们验证了6至350亿亿的每个偶数都是2个奇素数之和,那么6至350亿亿的每个偶数加3,则有:
9至3500000000000000003的每个奇数都是3+2个奇素数之和,
这验证了三素数定理推论Q=3+q1+q2的正确性。
r2(N)≥1
证明:
根据三素数定理推论Q=3+q1+q2
由此得出:每个大于或等于6的偶数N=Q-3=q1+q2
故“每一个大于或等于6的偶数N都是两个奇素数之和”,即总有r2(N)≥1
例如:任取一个大奇数:309,请证明:306是2个奇素数之和。
证明:根据三素数定理我们有:309=q1+q2+q3
根据加法交换律结合律,不妨设:三素数:q1≥q2≥q3≥3
那么:309+3=3+q1+q2+q3
309+3-q3=3+q1+q2
显然有且仅有q3=3时,309=3+q1+q2
则:306=q1+q2
证毕
参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

 楼主| 发表于 2021-10-3 09:25 | 显示全部楼层
本帖最后由 cuikun-186 于 2021-10-3 11:18 编辑

最简真值公式:

崔坤给出双记法(1+1)表法数公式:

r2(N)=(N/2)∏mr
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-3 11:17 | 显示全部楼层
例如:
[√70]=8,{Pr}={3,5,7},
3|/70,m1=13/35
5|70, m2=10/13
7|70, m3=10/10
根据真值公式得:
r2(70)
=(70/2)*m1*m2*m3
=35*13/35/10/13*10/10
=10
r2(70)=10为真
[√34]=5,{Pr}={3,5},
3|/34,m1=7/17
5|/34, 5的倍数已被3全部筛掉,
即5的倍数没有剩余,但剩余比m2=7/7=1
根据真值公式得:
r2(34)
=(34/2)m1*m2=17*1*7/17=7
r2(34)=7为真
[√210]=14,
{Pr}={3,5,7,11,13},
3|210,m1=2/3
5|210,m2=4/5
7|210,m3=6/7
11|/210,m4=5/6
13|/210,m5=19/20
根据真值公式得:
r2(210)
=(210/2)*m1*m2*m3*m4*m5
=105*2/3*4/5*6/7*5/6*19/20
=38
r2(210)=38为真
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-3 12:19 | 显示全部楼层
本帖最后由 cuikun-186 于 2021-10-4 16:26 编辑

三素数定理推论:Q=3+q1+q2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-29 05:39 | 显示全部楼层

三素数定理推论:Q=3+q1+q2
三素数定理推论:Q=3+q1+q2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-29 08:21 | 显示全部楼层


三素数定理推论:Q=3+q1+q2
三素数定理推论:Q=3+q1+q2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-30 06:26 | 显示全部楼层

崔坤给出双记法(1+1)表法数公式:

r2(N)=(N/2)∏mr
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-30 17:14 | 显示全部楼层

三素数定理推论:Q=3+q1+q2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-10-30 19:10 | 显示全部楼层
三素数定理推论:Q=3+q1+q2
原创作者:崔坤
中国青岛即墨,266200,E-mail:cwkzq@m网页链接
摘要:
数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考,
已知奇数N可以表成三个素数之和,
假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,
那么我们也就证明了偶数的哥德巴赫猜想。”,
直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
本文正是在上述方法和定理下给出了三素数定理推论=3+q1+q2
【该方法简称最小三素数法】
关键词:三素数定理,奇素数,加法交换律结合律
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:
Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,则Q=q1+q2+q3
根据加法交换律结合律,
不妨设:q1≥q2≥q3≥3
Q+3=q1+q2+q3+3
Q+3-q3=3+q1+q2
等式右边只有3+q1+q2,与q3无关
同时,有且仅有q3=3时,等式左边Q+3-q3=Q
则有新的推论:Q=3+q1+q2
左边Q表示每个大于等于9的奇数,右边表示3+2个奇素数的和。
结论:每一个大于或等于9的奇数Q都是3+2个奇素数之和
实际上:
数学家们验证了6至350亿亿的每个偶数都是2个奇素数之和,那么6至350亿亿的每个偶数加3,则有:
9至3500000000000000003的每个奇数都是3+2个奇素数之和,
这验证了三素数定理推论Q=3+q1+q2的正确性。
r2(N)≥1
证明:
根据三素数定理推论
由此得出:每个大于或等于6的偶数N=Q-3=q1+q2
故“每一个大于或等于6的偶数N都是两个奇素数之和”,即总有r2(N)≥1
例如:任取一个大奇数:309,请证明:306是2个奇素数之和。
证明:根据三素数定理我们有:309=q1+q2+q3
根据加法交换律结合律,不妨设:三素数:q1≥q2≥q3≥3
那么:309+3=3+q1+q2+q3
309+3-q3=3+q1+q2
显然有且仅有q3=3时,309=3+q1+q2
则:306=q1+q2
证毕
参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-11-1 11:59 | 显示全部楼层
研究哥猜必须以真值数据为准绳,否则谬之千里!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-8 12:08 , Processed in 0.090301 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表