|
本帖最后由 wufaxian 于 2022-8-23 16:31 编辑
题目:
你参加一个象棋比赛,必须与三个对手下象棋.按规定,只有赢两场比赛,才算你得胜.假定,与每个对手比赛的时候,你赢棋的概率是已知的.另外,你成为得胜者的概率与比赛的次序有关.证明将三位比赛对手中的最弱者排在第二位的时候,你成为得胜者的概率最大,而与其他两位对手的比赛次序无关.
答案:
Let pi be the probability of winning against the opponent played in the ith turn. Then, you will win the tournament if you win against the 2nd player (probability p 2 ) and also you win against at least one of the two other players [probability p 1 + (1-p 1 )p 3 = p 1 + p 3 - p 1 p 3 ]. Thus, the probability of winning the tournament is
p 2 (p 1 + p 3 - p 1 p 3 ).
The order (1, 2, 3) is optimal if and only if the above probability is no less than the probabilities corresponding to the two alternative orders, i.e.,
p 2 (p 1 + p 3 -p 1 p 3 ) ≥ p 1 (p 2 + p 3 -p 2 p 3 ),
p 2 (p 1 + p 3-p 1 p 3 ) ≥ p 3 (p 2 + p 1 - p 2 p 1 ).
It can be seen that the frst inequality above is equivalent to p2 ≥ p1 inequality above is equivalent to p 2 ≥ p 3 .
我的疑问:
从上文除了下划线部分都看懂了。不明白为什么强行规定 p 2 (p 1 + p 3 - p 1 p 3 ) ≥ p 1 (p 2 + p 3 -p 2 p 3 ),即“第二场赢,其他两场任赢一场的概率” 必须 大于等于 “第一场赢,其他两场任赢一场的概率?我赢1,3两场,输第二场不一样可以赢得比赛? 如果这一条解释通了,其他的就都理解了? |
|