|
我还是用自己熟悉的方法:从简单算起。
\(t=2,n=1,2,3,4,...,得到这样一串数:\frac{1}{1},\frac{4}{2},\frac{11}{3},\frac{26}{4},\frac{57}{5},\frac{120}{6},\frac{247}{7},\frac{502}{8},\frac{1013}{9},...,a(n)=\frac{2*2^n-n-2}{n}\)
\(t=3,n=1,2,3,4,...,得到这样一串数:\frac{3}{1},\frac{14}{2},\frac{49}{3},\frac{117}{4},\frac{479}{5},\frac{1450}{6},\frac{4365}{7},\frac{13112}{8},...,a(n)=\frac{2*3^n-n-2}{n}\)
\(t=4,n=1,2,3,4,...,得到这样一串数:\frac{5}{1},\frac{28}{2},\frac{123}{3},\frac{506}{4},\frac{2041}{5},\frac{8184}{6},\frac{32759}{7},...,a(n)=\frac{2*4^n-n-2}{n}\)
\(t=5,n=1,2,3,4,...,得到这样一串数:\frac{7}{1},\frac{46}{2},\frac{245}{3},\frac{1244}{4},\frac{6243}{5},\frac{31242}{6},...,a(n)=\frac{2*5^n-n-2}{n}\)
\(t=6,n=1,2,3,4,...,得到这样一串数:\frac{9}{1},\frac{68}{2},\frac{427}{3},\frac{2586}{4},\frac{15545}{5},...,a(n)=\frac{2*6^n-n-2}{n}\) |
|