| 
 | 
 
 
 楼主 |
发表于 2016-7-18 21:42
|
显示全部楼层
 
 
 
 
P和NP [ 编辑 ]  
 
复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。 很可能, 计算理论最大的未解决问题就是关于这两类的关系的:  
========维基百科  
 
计算机可以处理的问题包括图像处理。语音输入,数值计算  
 
图像处理与语音输入与数值计算的三者交集就是二进制:0,1  
 
对0,1进行穷举法有【0,0】【0,1】【1,0】【1,1】四种  
 
===计算机验证解的正确与否是S+1,S-1  
====================================== 
讨论一个特殊的问题 
================== 
 计算机天气预报显而易见是一个类P问题。  
天气预报如果是有雨或者天晴。  
DYI  
定义  
有雨是【1】  
定义  
天晴是【0】  
预报有雨,实际天气也是下雨,则计算机天气预报是准的。  
预报有雨,实际天气是晴,则计算机天气预报是不准。  
======  
预报天晴,实际天气也是天晴,则计算机天气预报是准的。  
预报天晴,实际天气是下雨,则计算机天气预报是不准。  
=====  
有三种选择  
AJ计算机天气预报的实际结果是准的。  
BJ计算机天气预报的实际结果是不准的。  
CJ计算机天气预报的实际结果是有时准有时不准。  
===从计算机天气预报经时间到实际的天气状况的验证,不管从统计学还是实际经验来谈,可以得到验证的结果是CJ计算机天气预报的实际结果是有时准有时不准。  
=====从验证的时间检验的实际的天气结果如果用计算机语言逻辑来说结果是属于模糊逻辑。  
即即计算机天气预报是数值计算是类P  
===ER而可知:计算机天气预报的验证是类NP的。  
====从实际经验来看有  
1) 天气预报是类P,ER而天气预报的实际验证是类NP.  
2)  
3)  
4) 除了图灵停机问题外  
5) 除了图灵停机问题外,所有的类p问题不等于类NP问题  
6) 除了图灵停机问题外,所有的类P问题等于类NP问题  
7) 除了图灵停机问题外,有类P问题等于类NP问题,也有类P问题不等于类NP问题。  
8)  
9) 天气预报结果准加一分,天气预报结果不准减一分  
10) 逻辑为S+1(准),S-1(不准), SFUZHU ……S赋值  
 
 
定义    
有雨是表示为符号 F  
 
 
定义    
天晴是表示为符号 L    
预报有雨,实际天气也是下雨,则计算机天气预报是准的。    
预报有雨,实际天气是晴,则计算机天气预报是不准。    
======    
预报天晴,实际天气也是天晴,则计算机天气预报是准的。    
预报天晴,实际天气是下雨,则计算机天气预报是不准。    
====================================  
 
  
 
模仿维特根斯坦真值表  
 
[F ,F] 》S+1  
 
[F ,L] 》S- 1  
 
[L ,L] 》S+ 1  
 
[L ,F] 》S - 1  
 
YONG  
 
用以1表示下雨,表示真,表示准  
 
都符合维特根斯坦真值表规则  
模仿维特根斯坦真值表  
 
[F ,F] 》S+1       [1 ,1]》1+1  为1  
 
 
 
[F ,L] 》S- 1       [1 ,0]》1- 1  为0  
 
[L ,L] 》S+ 1     [0 ,0]》1+1  为1  
 
[L ,F] 》S - 1      [0 ,1]》1- 1 为0  
 
====考虑S赋值1  
 
=====这是单次的天气预报的结论。  
15 楼: 玉龙县杨艳红  关注  于 2016-05-22 19:04  发表    只看该作者    发短消息    加为好友    
对照逻辑真值表  
 
[F ,F] 》S+1       [1 ,1]》1+1  为1  
 
 
 
[F ,L] 》S- 1       [1 ,0]》1- 1  为0  
 
[L ,L] 》S+ 1     [0 ,0]》1+1  为1  
 
[L ,F] 》S - 1      [0 ,1]》1- 1 为0  
 
====考虑S赋值1  
 
=====这是单次的天气预报的结论  
 
由逻辑真值表得出:在S赋值为1的情况下,单次的天气预报与验证是证明出了  
 
 
 
   P<-->(NP)  
 
 
 
,在任何情况下,总有P = Q。即一个命题与其逆否命题等价。也记做: P ←→ Q  
 
1) 天气预报是类P,ER而天气预报的实际验证是类NP.  
 
 
 
 
 
         即P ←→ (NP)  
 
即是) 除了图灵停机问题外,有类P问题等于类NP问题  
====================================================================== 
A-A=0 的证明  
 
楼: ylf521你好 关注 于 2010-12-18 10:58 发表 只看该作者 发短消息 加为好友  
 
 由角谷猜想的运运算规则出发 设数字S+1 ,S-1 准需准寻同一角谷运算规则运算S整数  
 
 
 
阿 
= 
A=3(S+1)+1 T=3(S-1)+1 A+T=6S+2=  
 
 
 
YOU由角谷规则出发A+T为偶数则应除2 记作角谷运算规则f(s)=A+T=3s+1  
 
 
 
@@ 由解决-5,-7,-17时依3X+1计算重复执行时会进入循环圈 据负数运算规则出发修改角谷奇数负时运  
 
 
 
算重复执行3X-1 偶数则除2记作F(S")  
 
 
 
G=3(s"+1)-1 C=3(s"-1)-1 G+C=6S"-2=3S'-1 既F(s")=G+C  
 
 
 
ze A+T+G+C=f(S)+F(S'")=3s+1+3S"-1=3(s+S")=3a  
 
 
 
当(s+S")奇时则以!3x+1 f(s)+F(S"0=3a*3+1=9a+1 s+S">0  
 
 
 
@@3x-1 f(s)+F(S")=3*3a-1=9a-1 s+S"<0  
 
 
 
s+S"为偶数除以2 f(s)+F(S")=3/2a  
 
 
 
yi乙 一整数小C表示为c=log(N*1/N*X) 则 -c=-log(N*1/N*X)  
 
 
 
A+T=c=logN+log(X/N ) G+C=-c=logN+long(1/N*1/X)  
 
 
 
ze A+T+G+C=f(c)+F(-c)=0000  
 
 
 
ji f(s)+F(S")=A+T+G+C=0  
 
 
 
因为由0定义是非奇非偶出发 当一个数表达为A+T+G+C时 不用(无法)执行循环的程序语句 即f(s)+F  
 
 
 
(S")有一种可能结果为0000  
 
 
 
 
 
 
 
a+t=3c+1=3logN+3log(x/N)+1  
 
g+c=3x-1=3logN+3log(1/(Nx))-1  
 
f(x)+f(-X)=6logN+3log(1/N*1/N)  
 
 
 
=6logN-6logN=0000  
 
 
 
 
 
 
 
 
 
图林条件停机、  
 
D等价于哥德尔不完全定理  
 
 
 
此解题方法叫=========对折迭加发法  
 
 
 
知识的第一原理-----  
 
---------同一事物即存在又不存在是不可能的-----  
 
----------------==== A=A  
 
--------------=====--[A]+[-A]=0 0就是不可能  
 
 
 
“ 知识的第一原理-----  
 
---------同一事物即存在又不存在是不可能的-  
 
-------------是非常清楚确定的,但我看不出能供给我们任何知识”  
 
-----《波儿罗亚尔逻辑》----《形式逻辑》---金乐霖  |   
 
 
 
 |