|
本帖最后由 时空伴随者 于 2022-10-26 09:55 编辑
王守恩 发表于 2022-10-25 18:46
数列 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, ······ 有通项公式吗?
...
python 3
for n in range(1, 40): print(f'a_{n} = {round((2*n)**.5)})')
运行结果
\(a_{1} = 1\)
\(a_{2} = 2\)
\(a_{3} = 2\)
\(a_{4} = 3\)
\(a_{5} = 3\)
\(a_{6} = 3\)
\(a_{7} = 4\)
\(a_{8} = 4\)
\(a_{9} = 4\)
\(a_{10} = 4\)
\(a_{11} = 5\)
\(a_{12} = 5\)
\(a_{13} = 5\)
\(a_{14} = 5\)
\(a_{15} = 5\)
\(a_{16} = 6\)
\(a_{17} = 6\)
\(a_{18} = 6\)
\(a_{19} = 6\)
\(a_{20} = 6\)
\(a_{21} = 6\)
\(a_{22} = 7\)
\(a_{23} = 7\)
\(a_{24} = 7\)
\(a_{25} = 7\)
\(a_{26} = 7\)
\(a_{27} = 7\)
\(a_{28} = 7\)
\(a_{29} = 8\)
\(a_{30} = 8\)
\(a_{31} = 8\)
\(a_{32} = 8\)
\(a_{33} = 8\)
\(a_{34} = 8\)
\(a_{35} = 8\)
\(a_{36} = 8\)
\(a_{37} = 9\)
\(a_{38} = 9\)
\(a_{39} = 9\) |
|