|
本帖最后由 杨协成 于 2021-8-28 00:15 编辑
使用分部积分法,令
\[u=(\ln{x})^{k-1}\]
\[v'=x^{k-1}\]
即
\[u'=(k-1)(\ln{x})^{k-2}\frac{1}{x}\]
\[v=\frac{x^k}{k}\]
我们有
\[\int uv' = uv - \int u'v\]
\[\begin{aligned}
\int_0^1 x^{k-1}(\ln{x})^{k-1}\,\mathrm{d}x
&=\underbrace{\left[(\ln{x})^{k-1}\frac{x^k}{k}\right]^{x=1}_{x=0}}_{=0}
-\int_0^1 (k-1)(\ln{x})^{k-2}\frac{1}{x}\frac{x^k}{k}\,\mathrm{d}x \\
&=-\frac{k-1}{k}\int_0^1 x^{k-1}(\ln{x})^{k-2}\,\mathrm{d}x
\end{aligned}\]
重复使用以上分部积分法的步骤,我们有
\[\begin{aligned}
\int_0^1 x^{k-1}(\ln{x})^{k-1}\,\mathrm{d}x
&=-\frac{k-1}{k}\int_0^1 x^{k-1} (\ln{x})^{k-2}\,\mathrm{d}x \\
&=\cdots \\
&=(-1)^{k-1}\frac{(k-1)!}{k^{k-1}}\int_0^1 x^{k-1}\,\mathrm{d}x \\
&=(-1)^{k-1}\frac{(k-1)!}{k^k} \\
\end{aligned}\] |
|