笛卡儿发现的坐标系,我们大概在中学念解析几何都学到。有一点是这样的(我的图可惜现在没法投影出来)给定一条直线,直线上有一个原点,其它的点由它们到原点的距离 x 来确定,然后经过 x 点沿一定的方向画一条直线,那么 y 坐标就是在那条直线上从 x 轴上这个点到各点所经的距离,这就是笛卡儿的坐标,英文叫 Cartesian 坐标。它的两条线不一定垂直。
不知道哪位先生写教科书时把两条线写成垂直了,因此 x 坐标与 y 坐标对称了。笛卡儿的两个坐标不是对称的,这是他非常重要的观念,我们现在就叫纤维丛。
这些跟 y 轴平行的直线都是 1 纤维,是另外的一个空间。原因是这样的:你把它这样改了之后,那条直线就不一定要直线,可以是任何另外一个空间了。这样可以确定空间里点用另外一组坐标来表示。所以有时候科学或数学不一定完全进步了,有时候反而退步了。
现代文明都靠电,控制电的方程的是麦克斯韦方程。现在纤维丛上有一个平行性,这个平行性的微分,等于电磁场的强度 F ,然后你把这个 F 再求它的另外一种微分(余微分)的话,就得到流矢量J。用两个简单的式子,就把麦克斯韦方程写出来了。普通你要念电磁学的书的话,当然需要了解电磁的意义,对此我不了解。但是要了解电磁学的意义,把方程全部写出来的话,书上往往是一整页,种种的微分呀什么的,讲了一大堆。其实简单地说,也就是平行性的微分是场的强度,而场的强度经过某个运算就得到它的流矢量。这就是麦克斯韦方程,与原来的完全一样。所以麦克斯韦方程就是建立在一维的纤维丛上,不过是一个复一维的纤维丛。你怎样把每个纤维拼起来呢?我们需要群的观念。
现在几何不仅应用到物理,也应用到生物学中。讲到 DNA 的构造,是一个双螺线,双螺线有很多几何,许多几何学家都在研究这个问题。现在许多主要的大学,念生物的人一定要念几何。现在有很多人研究大一点的复合物,这是分子,是由原子配起来的。原子怎么个配法就是几何了。这些几何的观念不再是空虚的,有实际上的化学的意义。