数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{navy}{\underset{n\to\infty}{\lim}n=\sup\mathbb{N}}\,不是自然数\)

[复制链接]
发表于 2025-7-21 12:36 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         根据波亚诺公理第3条在\(\mathbb{N}\)中,任何非0数都有前趋。所以elim用\(v=\displaystyle\lim_{n \to \infty}n=\)\(v-1=v-2=…=∞\)与皮亚诺公理语境不合是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-7-21 12:49 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         根据波亚诺公理第3条在\(\mathbb{N}\)中,任何非0数都有前趋。所以elim用\(v=\displaystyle\lim_{n \to \infty}n=\)\(v-1=v-2=…=∞\)与皮亚诺公理语境不合是扯淡!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-7-21 12:50 | 显示全部楼层
滚驴指望啼猿声驴打滚获戈培尔效应,畜生不如
回到滚驴不敢面对,拼命回避搪塞的主贴:


【定理A】\(\displaystyle\lim_{n\to\infty}n=\sup\mathbb{N}\)
【证明】作为\(\mathbb{N}\)全序列\(\{n\}\)的单增极限,  显然
\(\qquad \;v=\displaystyle\lim_{n\to\infty}n\) 是\(\mathbb{N}\) 的一个上界.  设 \(\mu\) 为\(\mathbb{N}\)
\(\qquad\)的上界, 则 \((^*)\quad n\le \mu\,(\forall n\in\mathbb{N})\). 对此关
\(\qquad\)于\(n\)取极限得\(\displaystyle\lim_{n\to\infty}n\le\mu\)(极限的保序性)
\(\qquad\)即\(v= \displaystyle\lim_{n\to\infty}n\)是\(\small\mathbb{N}\)的最小上界\(\sup\small\mathbb{N}.\quad\square\).
【定理B】\(\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}\) (\(\lim n\) 非自然数)
【证明】若不然, \(\displaystyle\lim_{n\to\infty}n=\sup\mathbb{N}\in\mathbb{N}\) , 则
\(\qquad\;\sup\mathbb{N}=\max\mathbb{N}\). 这与\(\mathbb{N}\)无最大元矛盾!\(\small\square\)
回复 支持 反对

使用道具 举报

发表于 2025-7-21 13:10 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         根据波亚诺公理第3条在\(\mathbb{N}\)中,任何非0数都有前趋。所以elim用\(v=\displaystyle\lim_{n \to \infty}n=\)\(v-1=v-2=…=∞\)与皮亚诺公理语境不合是扯淡!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-18 18:13 , Processed in 0.166301 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表