|
本帖最后由 天山草 于 2023-3-5 19:44 编辑
- Clear["Global`*"];
- \!\(\*OverscriptBox[\(b\), \(_\)]\) = b = 0; \!\(\*OverscriptBox[\(c\), \(_\)]\) = c = 1; a = (u^4 (v^4 - 1))/( u^4 v^4 - 1);
- \!\(\*OverscriptBox[\(a\), \(_\)]\) = (v^4 - 1)/(u^4 v^4 - 1); o = ( u^4 v^4)/(u^4 v^4 - 1);
- \!\(\*OverscriptBox[\(o\), \(_\)]\) = 1/(1 - u^4 v^4); R = ( I u^2 v^2)/(u^4 v^4 - 1);mAC = (a + c)/2;
- \!\(\*OverscriptBox[\(mAC\), \(_\)]\) = (\!\(\*OverscriptBox[\(a\), \(_\)]\) + \!\(\*OverscriptBox[\(c\), \(_\)]\))/2; mAB = (a + b)/2;
- \!\(\*OverscriptBox[\(mAB\), \(_\)]\) = (\!\(\*OverscriptBox[\(a\), \(_\)]\) + \!\(\*OverscriptBox[\(b\), \(_\)]\))/2;
- W1 = {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)} /. Simplify@Solve[{(d - o) (\!\(\*OverscriptBox[\(d\), \(_\)]\) -
- \!\(\*OverscriptBox[\(o\), \(_\)]\)) == R^2, (d - mAC)/(\!\(\*OverscriptBox[\(d\), \(_\)]\) - \!\(\*OverscriptBox[\(mAC\), \(_\)]\)) == -((a - c)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\)))}, {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)}] // Flatten;
- d = Part[W1, 3]; \!\(\*OverscriptBox[\(d\), \(_\)]\) = Part[W1, 4];
- W2 = {e, \!\(\*OverscriptBox[\(e\), \(_\)]\)} /. Simplify@Solve[{(e - o) (\!\(\*OverscriptBox[\(e\), \(_\)]\) -
- \!\(\*OverscriptBox[\(o\), \(_\)]\)) == R^2, (e - mAB)/(\!\(\*OverscriptBox[\(e\), \(_\)]\) - \!\(\*OverscriptBox[\(mAB\), \(_\)]\)) == -((a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)))}, {e, \!\(\*OverscriptBox[\(e\), \(_\)]\)}] // Flatten;
- e = Part[W2, 1]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Part[W2, 2];mAE = (a + e)/2;
- \!\(\*OverscriptBox[\(mAE\), \(_\)]\) = (\!\(\*OverscriptBox[\(a\), \(_\)]\) + \!\(\*OverscriptBox[\(e\), \(_\)]\))/2;
- W3 = {o2, \!\(\*OverscriptBox[\(o2\), \(_\)]\)} /. Simplify@Solve[{(o2 - mAE)/(\!\(\*OverscriptBox[\(o2\), \(_\)]\) -
- \!\(\*OverscriptBox[\(mAE\), \(_\)]\)) == -((a - e)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))), (o2 - a)/(
- \!\(\*OverscriptBox[\(o2\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == -((a - d)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) -
- \!\(\*OverscriptBox[\(d\), \(_\)]\)))}, {o2, \!\(\*OverscriptBox[\(o2\), \(_\)]\)}] // Flatten;o2 = Part[W3, 1];
- \!\(\*OverscriptBox[\(o2\), \(_\)]\) = Part[W3, 2];
- W4 = {o1, \!\(\*OverscriptBox[\(o1\), \(_\)]\)} /. Simplify@Solve[{(o1 - mAB)/(\!\(\*OverscriptBox[\(o1\), \(_\)]\) -
- \!\(\*OverscriptBox[\(mAB\), \(_\)]\)) == -((a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\))), (o1 - a)/(
- \!\(\*OverscriptBox[\(o1\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == -((a - c)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) -
- \!\(\*OverscriptBox[\(c\), \(_\)]\)))}, {o1, \!\(\*OverscriptBox[\(o1\), \(_\)]\)}] // Flatten;o1 = Part[W4, 1];
- \!\(\*OverscriptBox[\(o1\), \(_\)]\) = Part[W4, 2];
- W5 = {p, \!\(\*OverscriptBox[\(p\), \(_\)]\)} /. Simplify@Solve[{(p - o1) (\!\(\*OverscriptBox[\(p\), \(_\)]\) -
- \!\(\*OverscriptBox[\(o1\), \(_\)]\)) == (a - o1) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(o1\), \(_\)]\)), (p - o2) (
- \!\(\*OverscriptBox[\(p\), \(_\)]\) - \!\(\*OverscriptBox[\(o2\), \(_\)]\)) == (a - o2) (\!\(\*OverscriptBox[\(a\), \(_\)]\) -
- \!\(\*OverscriptBox[\(o2\), \(_\)]\)), p != a}, {p, \!\(\*OverscriptBox[\(p\), \(_\)]\)}] // Flatten;p = Part[W5, 1];
- \!\(\*OverscriptBox[\(p\), \(_\)]\) = Part[W5, 2];
- Print["D = ", d, ", E = ", e, ", O2 = ", o2, ", O1 = ", o1, ", P = ", p];
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\));(*复斜率定义*)
- Print["\!\(\*SuperscriptBox[\(\[ExponentialE]\), \(2 \[ImaginaryI]\\[Angle]PAC\)]\) = ", FullSimplify[k[a, c]/k[a, p]],
- ", \!\(\*SuperscriptBox[\(\[ExponentialE]\), \(2 \[ImaginaryI]\\[Angle]BAP\)]\) = ", FullSimplify[k[a, p]/k[a, b]]];
- Print["因为 \!\(\*SuperscriptBox[\(\[ExponentialE]\), \(2 \\[ImaginaryI]\[Angle]PAC\)]\) = \
- \!\(\*SuperscriptBox[\(\[ExponentialE]\), \(2 \\[ImaginaryI]\[Angle]BAP\)]\),所以 \[Angle]PAC = \[Angle]BAP,即 AP 是 \
- \[Angle]BAC 的平分线。 "]
复制代码 |
|