|
本帖最后由 Ysu2008 于 2025-3-7 22:39 编辑
此题技巧性太强,复述一遍过把瘾。
为方便求导,对原式取自然对数,并修正为
\(F=\log\left( a-b\right)\left( a-c\right)\left( b-c\right)abc+\lambda\left( a+b+c-6\right)\)
\(=\log\left( a-b\right)+\log\left( a-c\right)+\log\left( b-c\right)+\log a+\log b+\log c+\lambda\left( a+b+c-6\right)\)
依次对\(a{,}b{,}c\)求偏导并令导数为0,得(1), (2), (3)三等式
\(\frac{\partial F}{\partial a}=\frac{1}{a-b}+\frac{1}{a-c}+\frac{1}{a}+\lambda=0\) ……(1)
\(\frac{\partial F}{\partial b}=\frac{-1}{a-b}+\frac{1}{b-c}+\frac{1}{b}+\lambda=0\) ……(2)
\(\frac{\partial F}{\partial c}=\frac{-1}{a-c}+\frac{-1}{b-c}+\frac{1}{c}+\lambda=0\) ……(3)
\(\left( 1\right)+\left( 2\right)+\left( 3\right)\) :
\(\frac{1}{a-b}+\frac{1}{a-c}+\frac{1}{a}+\lambda+\frac{-1}{a-b}+\frac{1}{b-c}+\frac{1}{b}+\lambda+\frac{-1}{a-c}+\frac{-1}{b-c}+\frac{1}{c}+\lambda=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=-3\lambda\)
\(\left( 1\right)\times a+\left( 2\right)\times b+\left( 3\right)\times c\) :
\(\frac{a}{a-b}+\frac{a}{a-c}+\frac{a}{a}+a\lambda+\frac{-b}{a-b}+\frac{b}{b-c}+\frac{b}{b}+b\lambda+\frac{-c}{a-c}+\frac{-c}{b-c}+\frac{c}{c}+c\lambda=0\)
\(\Rightarrow6+a\lambda+b\lambda+c\lambda=0\)
\(\Rightarrow\lambda=-1\)
\(\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=3\) ……(4)
\(\left( 1\right)\times a^2+\left( 2\right)\times b^2+\left( 3\right)\times c^2\) :
\(\frac{a^2}{a-b}+\frac{a^2}{a-c}+\frac{a^2}{a}+a^2\lambda+\frac{-b^2}{a-b}+\frac{b^2}{b-c}+\frac{b^2}{b}+b^2\lambda+\frac{-c^2}{a-c}+\frac{-c^2}{b-c}+\frac{c^2}{c}+c^2\lambda=0\)
\(\Rightarrow3\left( a+b+c\right)+a^2\lambda+b^2\lambda+c^2\lambda=0\)
\(\Rightarrow a^2+b^2+c^2=18\)
\(\because\left( a+b+c\right)^2-\left( a^2+b^2+c^2\right)=2\left( ab+bc+ca\right)=6^2-18=18\)
\(\Rightarrow ab+bc+ac=9\)
代入(4)得 \(abc=3\)
由此可知\(a{,}b{,}c\)应为一元三次方程\(x^3+Bx^2+Cx+D=0\)的三个根,由韦达定理可得
\(\begin{cases}
a+b+c=6=-B\\
ab+bc+ac=9=C\\
abc=3=-D
\end{cases}\Rightarrow x^3-6x^2+9x-3=0\)
解此方程可得
\(\begin{cases}
a=2+2\cos\frac{\pi}{9}=3.879385...\\
b=2-2\sin\frac{\pi}{18}=1.652703...\\
c=2-2\cos\frac{2\pi}{9}=0.467911...
\end{cases}\) |
|