|
elim 发表于 2025-9-4 21:51
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...
elim认为【无法调和\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\implies\)\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)与\(\mathbb{N}\)无最大元的矛盾。】
其实不然,首先我们已经证明定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\)〗,其次,我们谱可证明〖\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)\(\color{red}{不与}\)\(\mathbb{N}\)无最大元的矛盾。〗证明如下:
〖证明:〗因为\(\forall n\in\mathbb{N}\),恒有\(10^n\in\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} 10^n=\)\(10^{\displaystyle\lim_{n \to \infty}n}\)\(\in\mathbb{N}\),易知\(10^{\displaystyle\lim_{n \to \infty}n}>n\),从而\(\displaystyle\lim_{n \to \infty}n\ne Max\mathbb{N}\),因此\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)\(\color{red}{不与}\)\(\mathbb{N}\)无最大元的矛盾。
|
|