数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
12
返回列表 发新帖
楼主: cyg571223

哥德巴赫猜想不成立之理由

[复制链接]
发表于 2012-4-13 21:10 | 显示全部楼层

哥德巴赫猜想不成立之理由

楼主的思维头脑值得称赞,但不够严谨。按照楼主的推理过程,如果将“殆素数”当作质数放入整个推理过程,同样可以得出:偶数不能写成素数+殆素数。但这与“陈氏定理”矛盾。楼主是否需要再斟酌斟酌。
发表于 2012-9-21 10:36 | 显示全部楼层

哥德巴赫猜想不成立之理由

看了你这里所说的“证明(2):此证明有两种方法,但有异曲同工之处,在此仅介绍方法一:自然奇数乘积的两倍一定是一个偶数,不妨设为N,那么,N=2•3•5•7•9•11•13•15•17•19•••n•••K,此偶数虽然大的出奇让人无法想象,但它确实是一个客观存在的偶数,无论它再有多大我们依然不难看出它是由素数和合数两种因子乘积组成的偶数,且发现偶数N减去任何一个小于等于K的素数其差值一定是一个合素而不是素数。如:N-3其差值一定是一个能被3整除的合素;也就是说:这个偶数不能表示成3与另一个素数之和的形式;又如:N-5其差值一定是一个能被5整除的合素;同样说明了这个偶数不能表示成5与另一个素数之和的形式;再如:N-7其差值一定是一个能被7整除的合素;”
这里的K必然小于N的平方根许多,当N=2•3•5•7•9•11•13•15•17•19•••n•••K。
如果说,N-3能被3整除,N-5能被5整除,•••••,N-K能被K整除,那么,N必然被3,5,7,•••,K整除,从K到N的平方根内,再从N的平方根到N内还有大量的素数,你敢说这大量的素数都不能组成偶数的素数对吗?
任何一个大于26的偶数,它不可能被它平方根之内的所有素数整除。
发表于 2012-9-21 14:25 | 显示全部楼层

哥德巴赫猜想不成立之理由

我认真地看了一下你的全文。你犯了一个低级错误:算术计算问题。
令大于30的任意偶数为N,N平方根以下的所有素数为素因子,当N大于30时,N不可能被所有素因子整除。
也就是说:令√N≈R,R为√N内的最大素数,当N=2*3*5*7*11*13*…*K,当N无限大时,K必然小于R许多,不论是从K到R,还是从R到N都存在许多素数,任何人都可以检验本人这里的说法。
当N不断增大时,它只能被它平方根内的部份素因子整除,当N无限增大时,它只能被它平方根内的绝小数素因子整除,所以,你的推理是站不住脚的,你的推论是不成立的。
发表于 2012-10-27 12:18 | 显示全部楼层

哥德巴赫猜想不成立之理由

喝NE美白茶最方便了,每天泡上茶,时不时喝上一口。2个月后全身都会变白变水润,一个水水的女人---我,就是这样子白起来的。呵呵。给小姐妹们推荐下。去乐购时尚网http://www.letgogo.com/#r-pqly看看吧,我很多朋友都也在那里定的。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-6 15:38 , Processed in 0.085354 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表