求介于 \(\sqrt{n}\) 与 \(\sqrt{n+1}\) 之间的分数 \(\frac{q}{p},\ p\) 最小=a(n)。
先从简单算起。
a(0)=2
a(1)=3
a(2)=2
a(3)=4
a(4)=5
a(5)=3
a(6)=2
a(7)=3
a(8)=6
a(9)=7
......
得到这样一串数:
{2, 3, 2, 4, 5, 3, 2, 3, 6, 7, 4, 3, 2, 3, 4, 8, 9, 5, 3, 5, 2, 3, 4, 5, 10, 11, 6, 4,
3, 5, 2, 5, 3, 4, 6, 12, 13, 7, 5, 4, 3, 7, 2, 5, 3, 4, 5, 7, 14, 15, 8, 5, 4, 3, 5,
7, 2, 5, 3, 7, 4, 6, 8, 16, 17, 9, 6, 5, 4, 3, 5, 7, 2, 5, 8, 3, 4, 5, 6, 9, 18, 19,}
通项公式是这样:
Table[k=2; While[Count[Range[n*k^2+1, (n+1)k^2-1], j_ /; IntegerQ@Sqrt[j]]==0, k++]; k, {n,0,81}]
特别地,介于 \(\sqrt{433}\) 与 \(\sqrt{434 }\) 之间的分数 \(\frac{q}{p},\ p\) 最小=11。
k=2; While[Count[Range[433k^2+1, 434k^2-1], j_ /; IntegerQ@Sqrt[j]]==0, k++]; k |