|

楼主 |
发表于 2023-1-29 01:50
|
显示全部楼层
拉马努金恒等式可能不是唯一的
已知:d^3=a^3+b^3+c^3 是本原解,
求解:(dm^2+t1mn+t2b^2)^3=(am^2+t3mn+t4n^2)^3+(bm^2+t5mn+t6n^2)^3+(cm^2+t7mn+t83n^2)^3
例:6^3=3^3+4^3+5^3
(6m^2 -4mn+4b^2)^3=(3m^2+5mn -5n^2)^3+(4m^2 -4mn+6n^2)^3+(5m^2 -5mn -3n^2)^3
例:9^3=1^3+6^3+8^3
求解:(9m^2+t1mn+t2b^2)^3=(1m^2+t3mn+t4n^2)^3+(6m^2+t5mn+t6n^2)^3+(8m^2+t7mn+t83n^2)^3
t1= , t2= , t3= , t4= , t5= , t6= , t7= , t8= ,
|
|