|

楼主 |
发表于 2022-6-4 16:47
|
显示全部楼层
本帖最后由 shuxuestar 于 2022-6-4 16:56 编辑
下面是一个应用前面推导公式,已知两端曲率求曲线形状的例子:
r=(C*k + D*cos(a) - sqrt(2*D*cos(a)*C*k + D^2*cos(a)^2 + D^2*k^2 + C^2 - D^2))/(k^2 - 1); a;
a=0,r右=(C*k + D - sqrt(D^2*k^2 + 2*C*D*k + C^2))/(k^2 - 1).
a=pi,r左=(-sqrt(D^2*k^2 + C^2 - 2*CDk) + Ck - D)/(k^2 - 1).
r左+r右=(C - D)/(k + 1)+(D + C)/(k + 1)
曲线通径 =2*C/(k + 1).
R右=(D*k + C)*(C - D)/((D*k + C - D)*(k + 1))
R左=(-D*k + C)*(C + D)/((-D*k + C + D)*(k + 1))
列方程,令:
2a=2;
R1=2/5;
R2=16/24=2/3;
2*C/(1 + k)=2; C=1 + k;
联合 C=1+k;
2/3=(D*k + C)*(C - D)/((D*k + C - D)*(k + 1));
2/5=(-D*k + C)*(C + D)/((-D*k + C + D)*(k + 1));
解:
C = 0,D = 0,k = -1;
C = (2*sqrt(22)+44)/21,D = (2*sqrt(22))/7,k = (2*sqrt(22)+23)/21;
C = -(2*sqrt(22)-44)/21,D = -(2*sqrt(22))/7,k = -(2*sqrt(22)-23)/21
数值:
C = 0,D = 0,k = -1;
C = 2.541944358078422,D = 1.34011878852098,k = 1.541944358078422;
C = 1.648531832397768,D = -1.34011878852098,k = 0.6485318323977686;
(三组解:D<0, k<0不合适,舍去。)
方程:
r=(C*k + D*cos(a) - sqrt(2*D*cos(a)*C*k + D^2*cos(a)^2 + D^2*k^2 + C^2 - D^2))/(k^2 - 1); a;
取参数C = 2.541944358078422,D = 1.34011878852098,k = 1.541944358078422;
方程图像为:
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|