|

楼主 |
发表于 2023-2-11 08:31
|
显示全部楼层
已知 n=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
试证: \(x^{n}+y^{n+1}+z^{n+2}=w^{n+3}\) 有 >1 的正整数解。
n≡模6余2:
\(\big((3)^{\frac{u}{6n-4}}\big)^{6n-4}+\big((3)^{\frac{u}{6n-3}}\big)^{6n-3}+\big((3)^{\frac{u}{6n-2}}\big)^{6n-2}=\big((3)^{v}\big)^{6n-1}\)
\(其中u,v由u=v*(6n-1)-1=s*LCM(6n-4,6n-3,6n-2)\)解得。
n≡模6余3:
\(\big((a^{6n+0}-2)^{\frac{u}{6n-3}}\big)^{6n-3}+\big((a^{6n+0}-2)^{\frac{u}{6n-2}}\big)^{6n-2}+\big((a^{6n+0}-2)^{v}\big)^{6n-1}=\big(a(a^{6n+0}-2)^{\frac{u}{6n+0}}\big)^{6n+0}\)
\(其中u,v由u=v*(6n-1)-1=s*LCM(6n-3,6n-2,6n+0)\)解得。
n≡模6余4:
\(\big((3)^{\frac{u}{6n-2}}\big)^{6n-2}+\big((3)^{\frac{u}{6n-1}}\big)^{6n-1}+\big((3)^{\frac{u}{6n-0}}\big)^{6n-0}=\big((3)^{v}\big)^{6n+1}\)
\(其中u,v由u=v*(6n+1)-1=s*LCM(6n-2,6n-1,6n+0)\)解得。
n≡模6余5:
\(\big((a^{6n+2}-2)^{v}\big)^{6n-1}+\big((a^{6n+2}-2)^{\frac{u}{6n+0}}\big)^{6n+0}+\big((a^{6n+2}-2)^{\frac{u}{6n+1}}\big)^{6n+1}=\big(a(a^{6n+2}-2)^{\frac{u}{6n+2}}\big)^{6n+2}\)
\(其中u,v由u=v*(6n-1)-1=s*LCM(6n+0,6n+1,6n+2)\)解得。
n≡模6余0:
\(\big((a^{6n+3}-2)^{\frac{u}{6n+0}}\big)^{6n+0}+\big((a^{6n+3}-2)^{v}\big)^{6n+1}+\big((a^{6n+3}-2)^{\frac{u}{6n+2}}\big)^{6n+2}=\big(a(a^{6n+3}-2)^{\frac{u}{6n+3}}\big)^{6n+3}\)
\(其中u,v由u=v*(6n+1)-1=s*LCM(6n+0,6n+2,6n+3)\)解得。
n≡模6余1:
\(\big((a^{6n+4}-2)^{v}\big)^{6n+1}+\big((a^{6n+4}-2)^{\frac{u}{6n+2}}\big)^{6n+2}+\big((a^{6n+4}-2)^{\frac{u}{6n+3}}\big)^{6n+3}=\big(a(a^{6n+4}-2)^{\frac{u}{6n+4}}\big)^{6n+4}\)
\(其中u,v由u=v*(6n+1)-1=s*LCM(6n+2,6n+3,6n+4)\)解得。
\(在这里: a=1, 2, 3, 4, 5, 6, 7, 8, 9, ......\) |
|