数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{\textbf{蠢可达}\color{navy}{\textbf{失算}}\textbf{集列交}}\)I

[复制链接]
发表于 2025-11-12 04:49 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-12 05:04 编辑


        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-12 08:12 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-12 09:04 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-12 12:32 编辑


        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-12 12:32 | 显示全部楼层
b]
        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-12 19:06 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-12 19:21 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-13 05:46 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:15 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:42 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:05 | 显示全部楼层

        对于elim所给集列\(\{A_n=\{m\in\mathbb{N}:\)\(m>n\}\}\)\((n\in\mathbb{N})\),易证集列\(\{A_n\}\)单调递减。所以\(\mathbb{N}_∞=\)\(\displaystyle\bigcap_{n=1}^\infty A_n=\)\(\displaystyle\lim_{n \to \infty} \{n+1,\)\(n+2,…\}\)\(\ne\phi\)(单减集列极限集的定义,见比大教材《实变函数论》定义1.8)。如果我们用该教材定义1.9,只要遵从集列\(\{A_n\}\)单调递减这一事实,我们仍然可得\(\underset{n→∞}{\underline{lim}}A_n=\)\(\underset{n\to\infty}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}\)\(\{n+1,n+2,…\}\)\(\ne\phi\)!elim避简就繁的目的,就是为了在演译过程渗入他【无穷交就是一种骤变】的假货!其实,elim关于\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的所有证明都是釆用的“因为\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)的循环论证模式!所以要说反数学,elim才是十足的反数学精英!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-12 07:32 , Processed in 0.107755 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表