| 谢谢 Treenewbee!
 a,b是正整数,  满足 \(\bigg\lceil\frac{n-a/b}{\sqrt[n]{\sin(\pi/5)}}\bigg\rceil\)=n,  n=1,2,3,4,5,...,  这样的{a,b}是怎样的一些数对?
 a=1, b=2--1,
 a=2, b=3--3,
 a=3, b=4--5,
 a=4, b=5--7,
 a=5, b=6--9,
 a=6, b=7--11,
 a=7, b=8--13,
 a=8, b=9--15,
 Table[{a, a + 1, -Ceiling[a/Log@Sin[\[Pi]/5]]}, {a, 30}]
 {{1, 2, 1}, {2, 3, 3}, {3, 4, 5}, {4, 5, 7}, {5, 6, 9}, {6, 7, 11}, {7, 8, 13}, {8, 9, 15}, {9, 10, 16},
 {10, 11, 18}, {11, 12, 20}, {12, 13, 22}, {13, 14, 24}, {14, 15, 26}, {15, 16, 28}, {16, 17, 30},
 {17, 18, 31}, {18, 19, 33}, {19, 20, 35}, {20, 21, 37}, {21, 22, 39}, {22, 23, 41}, {23, 24, 43},
 {24, 25, 45}, {25, 26, 47}, {26, 27, 48}, {27, 28, 50}, {28, 29, 52}, {29, 30, 54}, {30, 31, 56},
 
 |