|

楼主 |
发表于 2022-5-28 18:05
|
显示全部楼层
03 哲学与数学和逻辑的关系
欧洲哲学中逻辑和数学突出的核心地位,是众所周知的现象,这无疑是因为这些学科异常精确,同时又涉及最高的普遍性。一般大家都同意,数学在柏拉图哲学中扮演重要角色,亚里士多德是逻辑的建立者。笛卡尔和莱布尼茨的著作在哲学和数学中都具有相当的重要性,斯宾诺莎按几何推理的次序来安排他的《伦理学》。虽然康德把形式逻辑贬到边缘的位置,他的先验逻辑却稳居他的哲学的中心。黑格尔的逻辑学则是他的形而上学,或第一哲学。
到了 20 世纪,数学和逻辑对哲学的影响尤为显著。弗雷格(1848-1925)、胡塞尔(1859-1938)、罗素(1872-1970)和维特根施坦(1889-1951)都从数学基础起家。我们都熟悉他们的著作的重要性和他们对现今和当代哲学的影响。进一步讲,戴德金(Richard Dedekind, 1831-1916)、康托尔(George Cantor, 1845-1918)、庞加莱(Henri Poincaré, 1854-1912)、希尔伯特(1862-1943)、布劳威尔(1881-1965)和图灵(1912-1954)虽然主要以数学家闻名,但对数学哲学有深广的影响。皮尔斯(Charles S. Peirce, 1839-1914)、怀特海(Alfred N. Whitehead, 1861-1947)、C. I. 路易斯(C. I. Lewis, 1883-1964)、贝奈斯(Paul Bernays, 1888-1977)、卡尔纳普(Rudolf Carnap, 1891-1970)、拉姆赛(Frank Ramsey, 1902-1930)、哥德尔(1906-1978)和蒯因(1908-1999)都同时研究逻辑和哲学;他们的著作显示了把逻辑和哲学相联的几种不同的途径。
有效的思维,其特色即是把形式的和直觉的适当地融合起来。数学和逻辑之所以重要,是因为它们为我们提供了形式与直觉相互作用的一个模型和一个参考系。在日常生活中和科学思维里,我们总是在使用逻辑和数学,有时含而不露,有时则大张旗鼓。在哲学中,我们进而探讨它们的本性,它们之间的关系和它们与哲学的关系。
哲学在数学中发现了清晰思维的典范。明晰透彻的概念,确定无疑的结论,还有秩序井然的论域──纯粹理性的力量在这里给人留下最深刻的印象。柏拉图和哥德尔都把我们的数学经验当作主要的证据,来支持明白的概念的独立存在。前面已经说过,斯宾诺莎用几何学的方式把他的哲学系统组织和表述成一个公理理论。弗雷格努力寻求数学的严格的基础,结果获得了一般的哲学框架,用来研究所有科学话语中的意义和真等概念。哥德尔把对立的哲学当作不同的世界观,将数学视为他所钟爱的那种哲学的最后堡垒,那种哲学把世界看成一个有秩序有目的的整体。
哲学对数学的影响,就没有那么显著、那么深入了。康托尔确曾尝试从神学汲取力量,支撑他的集合论,罗素找不到宗教信仰的理性基础,则转向数学寻求安身立命的根本。哈代(G. H. Hardy)和别的一些数学家似乎觉得柏拉图主义哲学对他们的数学工作在一般的方面有所帮助。哥德尔独竖一帜,宣称──并且特地解释了为何──他的数学哲学里的柏拉图主义立场对于他的逻辑研究里的数学工作具有根本性的意义。
哲学对逻辑的关系比它对数学的关系更加直接和密切。逻辑被当作哲学的分支来教,在一些哲学里,逻辑以这种或那种形式占据了中心地位。然而我们知道,不仅对逻辑的本性人们有不同的看法,而且对逻辑的范围也是歧见纷呈。我们都在思维里默不做声地使用逻辑,但是只有不多的人把逻辑本身作为一门学科有意识地加以研究。
逻辑作为一种活动,即思维的艺术,裁决信念与行为间的相互作用,或如人们所认为的,裁决二者之间的辩证法,这种辩证法又在我们的思维过程里包含了主体与客体间的、已知与未知间的、主观与客观间的、形式与内容间的、共相与殊相间的、和形式与直觉间的辩证法,而且前者在思维过程中常常被后面诸项取而代之。逻辑的裁决作用表现在各式各样的思维当中。作为一种艺术或方法,逻辑对我们思想的材料来说,是中立的。
辩证法一词虽然模糊,但颇有意味,普通用它来描述对立的或相反的力量的相互作用,这种作用在某些过程里导致一个更高的更统一的阶段。传统上,辩证法与逻辑紧密相连。在整个中世纪里,辩证法一词都指称我们今天意义上的逻辑。对黑格尔来说,逻辑是辩证过程的科学,而辩证过程是对立面在部分与整体的复杂关系中持续不断的统一,它渗透在人类思维中,也弥漫于世界历史里。
人们熟知的对逻辑的题材的刻画,起头便是赞同逻辑真理包含而且只包含有效的命题,有效的意思是说,不管那些概念和客体在现实世界里是怎样的,这些命题都真。逻辑概念或逻辑常项因此便是有效的命题中出现的那些基本的或不可替代的概念。举例来说:每样东西等同于自身;每个命题蕴涵自身;或者一命题为真,或者它的否定为真,但并非二者都真;某事对每样东西成立,如果它对所有的东西成立。这些是有效的命题,因为不管那些概念和客体为何,它们都真。等同、蕴涵、否定、全称(所有的)等等,是出现在这些命题里的基本概念,它们便是逻辑常项。
进一步说,所有的命题都是由简单的谓述命题──即那些把某些概念应用于某些事物的命题──经过这些熟知的逻辑常项组织而成的。为了用统一的方法有效地处理命题,逻辑学家从亚里士多德到弗雷格发明了越来越充分的结构和记号,用来整饬建立命题的直观过程。今天普遍接受的谓词逻辑系统,就其一般形式而言,正是弗雷格 1879 年建造的系统。在实践中,没有人否认谓词逻辑的确是逻辑的一部分。
一场人们熟知的争论,集中在谓词逻辑是不是整个逻辑这个问题上。有可能重新构建谓词逻辑,使它看上去与管理它的逻辑常项(等词、命题联结词和量词)的推理规则打交道。譬如,我们可以设计一个完备的谓词逻辑系统,只采取事物的自我等同和命题的自我蕴涵作公理,把系统的主干让给刻画了逻辑常项的直观意义的自然推理规则,例如允许从两个给定的命题推出它们的合取的规则。用这个重构的谓词逻辑,那些希望把逻辑限制到谓词逻辑上的人,就可以诉诸人们熟悉的逻辑观念,将逻辑当作研究有效推理的规则的科学,以此来支持他们的论题。
要决定客体的范围,我们可以从熟知的物理客体出发。当我们考虑概念时,我们就被引向客体王国的一个自然的扩张:盘算我们最熟悉的概念,每一个都有一个对应的集合作这个概念的外延,就是这个概念能够应用于其上的所有事物的聚合。然而,正如弗雷格已经强调的,把外延设想成客体是很自然的。于是我们就被导向这样的观点:客体的集合也是客体。
既然逻辑研究必然的东西,就是说逻辑真的命题在一切可能的经验世界中都真,它就不会言及偶然的事实,像这个或那个经验客体或概念在现实世界里存在等等。这样一来,好像营建逻辑就没有了质料。
然而,即使不承认任何经验的事物,我们仍然认识到一定有某个空概念,它不能应用于任何事物,因此就有一个空集,它是每个空概念的外延。所以,在每个可能世界里,都至少有一个客体,即空集。但给定任何一些客体,我们都能建构它们的集合,它们的集合的集合,等等。用这个方法,我们就得到人们熟知的纯集合的分层,这是集合论研究的题目。因此我们可以说,集合论也是逻辑的一部分。
同样有可能预见一个类似的纯概念的理论,并且根据相同的理由论证它也是逻辑的一部分。不过我们知道,有些概念的适用范围并不构成集合:例如,概念的概念或集合的概念。由此可见,纯粹概念论并不全然是纯粹集合论的翻版。实际上,虽然眼下我们有一个令人满意的、发育良好的集合论,但要得到一个同样成熟的概念论,还有漫长的路程。在这个意义上,许多基础工作留待人们去做,甚至在建立逻辑的基本框架方面,也仍然任重道远──只要把概念论看成逻辑的一个不可分割的部分,情形就是如此。我先前已经说明,对逻辑的这种看法,我相信既应和了弗雷格的设想,又阐释了哥德尔的宣言。
哲学和逻辑的关系从这方面看来,与科学和数学的关系颇有相似之处。数学研究所有科学共同关心的一般的和抽象的方面,类似地,逻辑的课题可以看成从具象走向抽象时我们所有的哲学关切的共有成分或者说极限。我们也可以把逻辑看成一种形式的本体论,它构成了形而上学的一个基本的部分。
关于逻辑和哲学的关系,说得不那么抽象一点则可采取如下的观点:哲学作为世界观其目的乃是捕捉和描画我们的内部资源的一般的和综合的框架,借助于内部资源,我们接受、消化和解释我们关于世界和关于我们自身的所有的思想。照这样的看法,逻辑组成了哲学的一个主要部分,甚至可以等同于所谓的纯哲学。依我看,黑格尔的逻辑观和维特根施坦在他的《论确定性》一书中发展的观点,倾向于对逻辑及其与哲学的关系作这种解释。
我们每个人都学着去相信一些东西,并且逐渐形成了一个信念系统,作为对世界的看法。我们学着按照那些信念行事,有些信念坚实稳固,就像河床,还有些多少变动不居,就像流水。逻辑研究所有的信念系统中那些坚实稳固的信念。某些经验命题中的信念,即便不是逻辑的一部分,但也属于我们的参考框架。数学是逻辑的一部分。虽然同一个命题既可以看成一种检验规则,又可以在别的时候看成必须用经验来检验的东西,但逻辑不是一门经验科学。
以上是在维特根施坦文本的基础上,加上一种解释和说明,对逻辑作的一番粗略的刻画。但是这种刻画依然歧义杂陈,包含进一步精释的多种可能性。譬如,黑格尔和维特根施坦虽然都可以说运用了这种逻辑观念,但给出的答案却不同──这无疑在很大程度上是由于他们对同一和差别有不同的态度,也由于他们对什么是知识有不同的想法。无论如何,有一点是清楚的:按照这种观念,逻辑形成了哲学的一个重要部分。如果我们要求这种逻辑观念再精确一些,我认为未尝不可以把弗雷格—哥德尔的构想,当作它的一种精释。
要把这种逻辑观念──即把逻辑看成不同的信念系统的共同部分──和我们熟悉的共同关切联系起来,一个办法是与罗尔斯的工作相比较,罗尔斯用正义的政治观念来替换综合的政治理论,而正义观念的用意是代表现代民主社会里相交的合意。如果考虑相互冲突的哲学世界观的共同部分或整个相交的合意,我们就似乎有了一个比较踏实的方法,来逐步确定先天的东西的模糊领域,所谓先天的东西是指我们潜在地能够独立于我们特别的个体经验而得到和接受的那些概念和信念。换言之,我们可以不把自己限于一种类型的社会,尝试寻找所有不同的世界观共有的概念和关于它们的信念。如果把逻辑的范围等同于先天的东西的范围,或者可能它的极大普遍的部分,我们就在逻辑里有了一个共同的基础,藉之我们可以希望在相互冲突的综合哲学之间做出裁决。
数理逻辑按今天一般的理解来说,大体包含递归论或计算理论、证明论和构造性数学、模型论、和集合论。它是数学的一个分支,也是科学的一个分支。如果我们把逻辑限于这种意义上的数理逻辑,那么哲学和逻辑之间的关系就是哲学与科学之间的一般关系的一种特殊情形。整体说来,数理逻辑的发展,特别是在它早期的阶段,深受哲学关切的影响:……[17]反之,它对数学哲学作用之巨,可谓入木三分,影响由此及于一般哲学的几个基本部分。
人们对哲学与科学的关系见仁见智,态度不一。比如爱因斯坦曾说:“认识论和科学的相互关系值得玩味。它们互相依赖。认识论若没有科学相伴就变成空架子,而科学若没有认识论,无论怎么想象,都是粗陋和糟糕的”。但今天大多数做实际工作的物理学家对认识论不屑一顾。同样,今天大多数做实际工作的数理逻辑学家不像哥德尔,他们对哲学至多有一点浅表的兴趣。态度上如此大的差异,无疑与个别学科当前的发展状况有关,也与科学家个人研究的具体问题有关。
无独有偶,不同的哲学家对哲学和科学的积极关系或珍重有加,或啧有烦言,这取决于他们对两科抱怎样的看法,和他们对哲学中何者为要的偏好。哥德尔认为科学与哲学的相互作用有利于双方。另一方面,维特根施坦却觉得科学有害,因为它增强了“我们对概括的渴望”,而这种渴望导致坏的哲学。他认为真的哲学与数学无干──虽然他有时声称哲学可以帮助科学转到迎合我们的真正需要的正确轨道上来。
实际上,我们的确从科学结果中抽出哲学结论来,不管是有所收益,还是徒增迷惑。我们都知道,科学和宗教有冲突,科学的发展改变了我们对世界的整个的看法。职业哲学受重要的科学进步的影响,如牛顿物理学、达尔文生物学、相对论、量子物理学、和分子遗传学。其他人且不说,哥德尔自己曾反复考虑他的不完全性定理的哲学意蕴。
另一方面,说到哲学对科学的影响,我们知道许多科学思想从哲学中萌芽。神学中颁布自然律的上帝,对牛顿那样的物理学家孜孜不倦地追求自然秩序,很可能有积极的影响,本世纪中,爱因斯坦和哥德尔都提到哲学对他们的科学工作的有力的促动。
哲学和科学相互影响的一个显著的例证,是希尔伯特方案里提出的一系列富有成果的数学问题,它们是借助想象和技巧从关于数学基础的哲学争辩中提炼出来的。在这类情形里,科学问题的解答也有助于澄清原来的哲学问题。哥德尔看到哲学的一个作用是提供初生的思想──比如原子论,这是德谟克里特提出的,另一个作用是把哲学问题还原为科学问题,他提议寻找心优越于物的科学证明来澄清关于心与物的哲学问题,其用心即在于此。再者,哥德尔相信能找到精确的形而上学,这个信念似乎出自他对我们数学和物理学经验的反思的大胆的──虽然不那么令人信服的──外推。
哥德尔世界观的各个部分具有不同程度的清晰性和确定性;它们结合在一起,乃是由于一种对于不同程度的说服力的多少不受约束的概括。他的数学方面的工作是确定无疑的。他把逻辑作为概念论的设想,界定了一项相当精确和引人入胜的任务,虽然我们眼下还不知道,致力于发展这样的一个系统所得究竟如何。哥德尔的数学中的柏拉图主义意味深长,它包容了一套解释的谱系,从较弱的过渡倒较强的,从浅白易解的直达深沉宏博的。他含蓄地拿数学类比形而上学,这对我们大多数人来说,是难以接受的;这同时提示了一些与他的意图相符的可能性,虽然不够切实,但也不乏可行性。
毫无疑问,不同的人会接受哥德尔世界观的不同部分,从中汲取不同的教益。我相信,关于他的工作的几个部分的不同程度的确定性和说服力,大部分哲学家多少会同意我的分类和评价。有些人可能会觉得他的一些想法不无道理而且颇具吸引力,因此希望进一步澄清和发展这些想法。另一些人则可能把他的大部分哲学思想视为无稽之谈,将他的坏哲学和他的逻辑上的好工作区别对待。
注释
[1] 参见王浩 Reflections on Kurt Godel(Cambridge: The MIT Press, 1987)(以下简称为RG)第 31-32 页。中译本名为《哥德尔》,康宏逵译,上海译文出版社 1997 年出版,相关页数为第 47 页。──译者
[2] Andrew Hodges, Alan Turing: the Enigma. Simon & Schuster, 1983.
[3] Martin Davis (ed.), The Undecidable. Hewlett, New York: Raven Press Books, Ltd., 1965.
[4] Kurt Godel, Collected Works, vol. 1, ed. Solomon Feferman et. al. Oxford University Press, 1986.
[5] Nagel, Ernest, and J. R Newman, Godel's Proof. New York: New York University Press, 1958.
[6] Douglas R. Hofstadter, Godel, Escher, Bach: an Eternal Golden Braid. Basic Books, 1979. (此处用郭维德等中译本[商务印书馆,1997 年]标题。──译者)
[7] Rudy Rucker, Infinity and the Mind. Birkhauser Verlag, 1982.
[8] Roger Penrose, The Emperor's New Mind. Oxford University, 1990. (中译本见:罗杰·彭罗斯,《皇帝新脑》,许明贤、吴忠超译,湖南科学技术出版社,1996 。──译者)
[9] Hofstadter, 1979, p.707.
[10] Judson Webb, Mechanism, Mentalism, and Metamathematics: An Essay on Finitism. Reidel, 1980.
[11] Penrose, 1990, p.416.
[12] 比较 RG , p.156.
[13] 参见 RG 的中译本第 31 页。──译者
[14] 同上。──译者
[15] Hao Wang, From Mathematics to Philosophy (以下称MP). New York: Humanities Press, 1974, 8-11.
[16] 康宏逵用“概称”翻译 notion 一字,此处沿用这个译法。参见《哥德尔》(上海译文出版社,1997)页 436 注 2 ,页 444-5 。──译者
[17] 原文如此。因本书未经作者最后校读,疑此处作者原想加入部分内容而最终遗漏。──译者
本文原文刊于《科学文化评论》 2004 年第 6 期 |
|