数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 888|回复: 184

\(\Huge\color{red}{\underset{n\to\infty}{\lim}n\textbf{ 不是自然数}}\)

[复制链接]
发表于 2025-2-27 12:43 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-4-15 10:00 编辑

对任意 \(m\in\mathbb{N},\;n\to\infty\) 时 \( n > m\) 故 \(m< \displaystyle\lim_{n\to\infty} n\)
\(\therefore\;\;\displaystyle\lim_{n\to\infty}n\) 不是自然数. 进而 \(\displaystyle\lim_{n\to\infty}n+j\) 也不是自然数.
孬种蠢疯的胡说八道再次验明坐实其数学白痴真身.
发表于 2025-2-27 12:48 | 显示全部楼层
完全同意楼主. 孬种蠢疯就是个白痴!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 15:05 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-2-27 20:17 编辑

elim,【\(\forall m\in\mathbb{N},n\to\infty\)时n>m,\(m<\displaystyle\lim_{n→∞} n\)】与\(\displaystyle\lim_{n→∞} n\)是不是自然数有什么关系?因为小学生都知道自然数集是无限集,所以\(\displaystyle\lim_{n→∞} n∈\mathbb{N}\),所以\(\displaystyle\lim_{n→∞} n\)是逻辑确定的自然数。所以\(\displaystyle\lim_{n→∞} n\)+j(j∈N)也是自然数(自然数对加法运算封闭)!由于elim对于自然数的认知还不及小学四年级的学生,所以你得出\(\displaystyle\lim_{n→∞} n\)及\(\displaystyle\lim_{n→∞} n+j\)都不是自然数那也不奇怪了。毕竟小学数学教学大纲没要对小年一至三年级渗透自然数的无限性和无界性嘛!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 20:06 | 显示全部楼层
\(\lim_{n\to\infty}n\) 不是一个自然数,而是一系列无穷多个自然数集合,其元素都是无穷大自然数,或超穷大自然数,等等。

点评

\(\Huge\text{APB}\textbf{与蠢疯对}\lim n\textbf{是否是自然数意见相左,属不同的畜生}\)  发表于 2025-2-28 23:51
回复 支持 反对

使用道具 举报

发表于 2025-3-1 07:57 | 显示全部楼层
正整数集\(\mathbb{N}\)是无限集这是小学生都知道的常识。所以必有\(\displaystyle\lim_{n→∞} n\)是自然数。若不然,若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以,若\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,则\(\mathbb{N}=\phi\)!注意,虽然\(v\)和∞都表示无穷大,康托尔认为\(v\)是适当的无穷大,而∞则是不适当的无穷大。固此e氏的【自然数皆有限数】谬论无现行数学理论支撑,从而【\(\displaystyle\lim_{n\to\infty} n\)大于任意自然数】亦是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-1 22:24 | 显示全部楼层
\(\mathbb{N}\)是无限集恰好说明\(\displaystyle\lim_{n\to\infty} n\)是自然数。若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以,若\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,则\(\mathbb{N}=\phi\)!试问elim【\(\displaystyle\lim_{n\to\infty} n\)大于任意自然数】就能证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?这一命题的依据是什么?是因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 03:04 | 显示全部楼层
本帖为密码帖 ,请输入密码 
回复 支持 反对

使用道具 举报

发表于 2025-4-5 14:02 | 显示全部楼层

       elim经过一段时间(从2025年3月5日至2025年4月4日)的"潜心研究",终于在2025年4月5日08:19又重返论坛继续他的胡说八道。
       elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!

回复 支持 反对

使用道具 举报

发表于 2025-4-5 20:28 | 显示全部楼层

        elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!
.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-6 01:55 | 显示全部楼层
春风晚霞 发表于 2025-3-1 16:50
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\ ...

对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任意自然数因而\(v\)不是自然数, 否则\(v+1\)是
自然数从而大于任意自然数的\(v\)大于自然数\(v+1\).
\(v\)与皮亚诺公理不合, 再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数
孬种所有谬论的终极依据是其人太蠢种太孬

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-25 00:57 , Processed in 0.088385 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表