理论依据
\(\bullet\)树结构理论边数 \( v = d - 1 \),辐边数由中心节点与外围的3向连接修正重叠项 \( 3d - 4 \)。 参数扩展:\( v = d - 1 \)
\(\bullet\)\( a \): 中心区域实际边数
\(\bullet\)\( v \): 中心区域理论边数
\(\bullet\)\( z = |v - a| \): 调整项符号规则:
\(\bullet\)\( v > a \Rightarrow -z \)
\(\bullet\)\( v < a \Rightarrow +z \)
\(\bullet\)\( v = a,z=0\)
极端情况验证:
\(\bullet\)轮图(\( d = 1 \)):
\(w = n + 3(1) - 4 = n - 1 \quad \text{(符合轮图辐边特性)}\)
if n % 2 == 0:
# 偶数环3色方案
for i in range(1, n+1):
if i % 2 == 1: # 类型A
colors = 2 if (i//2) % 2 == 0 else 3
else: # 类型B
left = colors[i-1]
right = colors[1 if i==n else i+1]
colors = 2 if {left,right} == {3} else 3
else:
# 奇数环4色方案
for i in range(1, n):
colors = 2 if i % 2 == 1 else 3
colors[n] = 4
if n % 2 == 0:
# 偶数环3色方案
for i in range(1, n+1):
if i % 2 == 1: # 类型A
colors[i] = 2 if (i//2) % 2 == 0 else 3
else: # 类型B
left = colors[i-1]
right = colors[1 if i==n else i+1]
colors[i] = 2 if {left,right} == {3} else 3
else:
# 奇数环4色方案
for i in range(1, n):
colors[i] = 2 if i % 2 == 1 else 3
colors[n] = 4