数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 35|回复: 1

\(\Huge\color{red}{再证\lim n\in\mathbb{N} }\)

[复制链接]
发表于 2025-8-10 08:23 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-8-10 19:48 编辑


        【命题:】若\(\mathbb{N}\)是无限集,则\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
        【证明:】设自然数列的一般项为\(a_k=k\),则有\(\displaystyle\lim_{k \to \infty}a_k=\)\(\displaystyle\lim_{k \to \infty}k\).所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).也就是说,无论把\(v=\displaystyle\lim_{n \to \infty}n\)理解为柯西极限\(v\)趋近但不等于\(\infty\),还是理解为威尔斯特拉斯极限(即把\(\infty\)看作一个非正常实数,从而\(v=\infty\). 见华东师大《数学分析》第四版上册P64页第26行),都有\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。所以命题得证.
 楼主| 发表于 2025-8-10 13:01 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 17:32 , Processed in 0.083200 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表