|
,,
本帖最后由 金瑞生 于 2023-2-19 22:54 编辑
kezhulu先生:您好!
本人试着解了一下先生给的题目,请指正。
(a)有题设的恒等式可知:\(A\)\(\subseteq\)\(B\).
(b)若\(A\)\(\ne\)\(\phi\),方程\(at^2-t-1=0\)判别式\(1+4a\)\(\ge\)0,\(a\)\(\ge\)\(\dfrac{-1}{4}\).
(c)方程\(a^2x^2+ax-a+1=0\)没有实根时,\(A\)=\(B\),判别式\(a^2-4a^2(-a+1)\)=\(4a^3-3a^2\)=\(a^2(4a-3)\)\(\lt\)0,\(a<\)\(\dfrac{3}{4}\)且\(a\)\(\ne\)0,由\(A\)=\(B\)\(\ne\)\(\phi\),则 \(\dfrac{3}{4}\)>\(a\)\(\ge\)\(\dfrac{-1}{4}\)且\(a\)\(\ne\)0
有重根时,\(a\)\(\ne\)0,判别式\(a^2(4a-3)\)=0,\(a\)=\(\dfrac{3}{4}\). 验证:
\(x_{1,2}\)=\(\dfrac{-a}{2a^2}\)=\(\dfrac{-1}{2a}\)=\(\dfrac{-2}{3}\),
\(t_{1,2}\)=\(\dfrac{1\pm\sqrt{ 1+4a}}{2a}\)=\(\dfrac{2\pm4}{3}\).
\(t_1\)=\(2\),\(t_2\)=\(\dfrac{-2}{3}\).
这时,\(s_{1,2,3}\)=\(\dfrac{-2}{3}\),\(s_4\)=\(2\),\(A\)=\(B\)\(\ne\)\(\phi\),
有两个不相等的实根时,判别式\(a^2(4a-3)\)>0,\(a>\)\(\dfrac{3}{4}\). 验证:
\(x_{1,2}\)=\(\dfrac{-a\pm\sqrt{ a^2(4a-3)}}{2a^2}\)=\(\dfrac{-1\pm\sqrt{ (4a-3)}}{2a}\)
\(t_{1,2}\)= \(\dfrac{1\pm\sqrt{ 1+4a}}{2a}\)
\(s_{1,2}\)=\(\dfrac{-1\pm\sqrt{ (4a-3)}}{2a}\),\(s_{3,4}\)= \(\dfrac{1\pm\sqrt{ 1+4a}}{2a}\)
求解: \(\dfrac{-1\pm\sqrt{ (4a-3)}}{2a}\)= \(\dfrac{1\pm\sqrt{ 1+4a}}{2a}\),即
\(-1\)\(\pm\)\(\sqrt{ (4a-3)}\)= \(1\)\(\pm\)\(\sqrt{ 1+4a}\),\(\pm\)\(\sqrt{ (4a-3)}\)= \(2\)\(\pm\)\(\sqrt{ 1+4a}\)
求得:\(a\)=\(\dfrac{3}{4}\).矛盾。故\(a>\)\(\dfrac{3}{4}\)应该舍去。
总之,若 \(A\)=\(B\)\(\ne\)\(\phi\),则\(a\)的取值范围: \(\dfrac{3}{4}\)\(\ge\)\(a\)\(\ge\)\(\dfrac{-1}{4}\)且\(a\)\(\ne\)0 .
|
|